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Abstract—The work focuses on optimal formation of virtual
sensors (VSs) within a sensor-cloud infrastructure. Existing work
on sensor-cloud have considered the formation of VS with the
maximal set of compatible physical sensor nodes. However, as
these underlying nodes are highly resource constrained, ineffi-
cient and redundant utilization of the nodes takes a toll on the
entire performance of the cloud and the network. In this work,
we propose algorithms for efficient virtualization of the physical
sensor nodes and optimal composition of VSs — within the same
geographic region (CoV-I) and spanning across multiple regions
(CoV-II). Experimental results demonstrate that, compared to the
existing strategy of maximal composition of VSs, CoV-I improves
the cumulative energy consumption and the network lifetime
by 34.9% and 61.04%, respectively, and CoV-II enhances the
parameters by 68.4% and 29.59%, respectively.

Index Terms—Sensor-cloud, Virtualization, Wireless Sensor
Network

I. INTRODUCTION

Recent research has spawned the emerging concept of

sensor-cloud as a potential substitute for traditional Wireless

Sensor Networks (WSNs) [1], [2]. Sensor-cloud infrastructure

is defined as an interface between the physical and the

cyber world that functions as a platform for remote data

management, monitoring, and provisioning [3], [4]. It is a new

dimension of cloud computing that thrives on the virtualization

of physical sensor nodes [5] thereby provisioning the physical

sensor nodes as an on-demand service to remote applications

[6]. This enables the end-users to envision the physical sensors

simply as an easily obtainable, and accessible service —

Sensors-as-a-Service (Se-aaS) [7], rather than as a typical

hardware.

In sensor-cloud infrastructure, the physical sensor nodes are

allocated as per the demand of the applications at the user end,

and are accordingly grouped to form virtual sensors (VSs).

The VSs are further grouped to form the virtual sensor groups

(VSGs). Se-aaS is provisioned to the end-users through the

VSs or the VSGs [8]. In the existing work on sensor-cloud,

applications are served by a VS comprising of the maximal

set of the physical sensor nodes that satisfy the requirements

of that application. However, keeping in mind the resource

constrained behavior of the underlying sensor network, the

membership within a VS should be done optimally, and effi-

ciently. This work focuses on dynamic, optimal, and resource

efficient algorithms for selection of components of a VS, based

on the application-demand.

A. Motivation

This work is strongly motivated by the constrained behavior

of the underlying physical network in terms of the battery-

life of the individual sensor nodes, as well as the lifetime of

the network. Within the sensor-cloud infrastructure, when a

particular application requests for Se-aaS, the compatibility

of the physical sensor nodes are examined on the basis of the

type, location, Quality of Service (QoS), and other application

specific requirements. A subset of compatible sensor nodes are

chosen to make up the corresponding VS of that particular

application. As of now, all of the works on sensor-cloud

have assumed every member of the compatible subset to

account for the formation of the VS. However, allocation of

the largest subset of compatible sensor nodes effectively leads

to redundant utilization of the resources, and, consequently,

unnecessary consumption of the same.

B. Contributions

The goal of this work is to address the above-mentioned

problem of maximal allocation of sensor nodes for a particular

VS. The work focuses on an optimal selection of sensor nodes,

that are compatible to the requirements of an application, and

preserve the efficiency of resource utilization, simultaneously.

The work proposes two distinct algorithms to compose a VS

optimally — i) CoV-I - Composition of VS when the sensor

nodes bear homogeneous sensing hardware and belong to the

same geographical boundary (as shown in Figure 1(a)), and

ii) CoV-II - Composition of VS when the sensor nodes with

heterogeneous sensing hardware span across multiple geo-

graphical regions, thereby comprising of multiple VSs, which,

in turn, form a VSG (shown in Figure 1(b)). The aforesaid

algorithms are efficient in terms of preserving efficacy in the

utilization of the resources.

C. Organization of the paper

The rest of the work is organized as follows. Section II

describes the background of the research and the work done

so far. In Section III, we discuss the system model in which

Section III-A, and III-B focus to solve the problem for two
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different scenarios. In Section IV, we present the theoretical

analysis of the work. The performance evaluation of CoVs

is illustrated in Section V. Finally, Section VI concludes the

work.

II. BACKGROUND

This Section studies and analyzes the work done so far on

this aspect. Prior to the advent of sensor-cloud infrastructure,

some works focussed on the integration of traditional WSNs

to a cloud platform [9], [10]. Some of the works addressed

the problem of dynamic channelization of the sensed data to

the cloud gateways [11], [12]. In another work [13], Taleb

and Ksentini proposed the integration of federation clouds and

mobile networks. In [14], Mendes et al. addressed the issues

associated with the differences in protocols (IEEE 802.15.3

and IEEE 802.15.4) during cloud-based communication of

multimedia WSNs.

The original interpretation of sensor-cloud through virtual-

ization of physical sensor nodes was presented by Yuriyama

and Kushida [2], [3]. The dogma of the idea, the challenges,

and the benefits are discussed in [4], [5]. Few application

oriented works are also presented in [6], [15]. However, very

few works addressed the technicalities concerning sensor-

cloud infrastructure. Misra et al. theoretically modeled sensor-

cloud infrastructure [7]. In [8], Bhunia et al. mentioned the

event-driven gathering of data within sensor-cloud through

fuzzification. Nguyen and Huh [15] presented some of the

security aspects of sensor-cloud.

To the best of our knowledge, the above-mentioned works

have not focused on the efficiency of virtualization, and the

enhancement of resource utilization while doing so. As men-

tioned earlier, this paper focuses to compose a VS optimally,

thereby ensuring the efficacy of resource utilization.

III. SYSTEM MODEL

In this Section, we present the system model for the compo-

sition of the VS, and the VSG. The Section is subdivided into

two distinct subsections. We consider two distinct scenarios

as shown in Figure 1.

• Case (a):

Initially, we focus on the methodology for the efficient

composition of a VS, as shown in Figure 1(a). The Figure

analyses the formation of a VS in which the underlying

physical sensor nodes fall within the same geographic

region, and are homogeneous with respect to the sensing

hardware. Under such circumstances, the optimal forma-

tion of VS, CoV-I, is discussed in subsection III-A.

• Case (b):

The other scenario considers the presence of heteroge-

neous sensor nodes spread across different geographic

regions, as shown in Figure 1(b). Homogeneous sensor

nodes from multiple regions (R1, R2, R3, R4, R5, and

R6) together form a VS, whereas, multiple VSs (com-

prising of heterogeneous sensor nodes) combine to form

a VSG that serve a particular application, as discussed in

CoV-II, presented in subsection III-B.

(a) Formation of VS (b) Formation of VSG

Figure 1: Virtualization of the physical sensor nodes

Before we discuss the formation and optimality of a VS in

a case by case manner, we define some of the preliminaries of

our work. We assume a set of r non-overlapping finite regions,

R = {R1,R1, ...,Rr},Ri

⋂

Rj = Φ, ∀1 ≤ i, j ≤ r, i 6= j,

within which the physical sensor nodes are deployed. Every

sensor node si is characterized by the center of its deployment,

(l1, l2), representing the latitude, and longitude of the absolute

position of the node, respectively, and its sensing radius at time

t, λt. Thus, the location specific nomination of sensor nodes,

for a particular application App with Rreq (Rreq ⊆ R) as the

region of interest is given by,

S = {si} | (ϕ(l1, l2, λ
si
t ) ⊆ Rreq) ∧ (si.type = App.type)

(1)

where ϕ(· · · ) computes the region equivalent of the sensing

area of a sensor node. The “type” attribute stores the type of

the sensor nodes in terms of the sensing hardware, e.g. rainfall

sensor, temperature sensor, and so on. For two sensor nodes,

si, and sj to be homogeneous, si.type = s2.type.

A. CoV-I: Composition of VS within the same region

This subsection proposes the optimum Composition of VS

(CoV-I) algorithm for the selection of homogeneous compo-

nent nodes from the same geographic region, S = {si}, where

si.type = sj .type, and Equation (1) holds. S is the largest set

of compatible sensor nodes that can serve application App. In

CoV-I, we assume K number of applications to be served by

sensor-cloud. Pi is the priority of Appi, the lowest indicating

the highest priority. The “goodness” of every physical node of

S is initially quantified. The factors affecting the goodness of

a node si are:

• Normalized Residual Energy (NRE): NRE is defined as

the ratio of the current energy level to the initial energy

level, expressed as, Qt
si

=
Ecur

si

Einit
si

where, Ecur, and Einit

are the current and the initial battery level, respectively.

• Expected Received Signal Strength Intensity (ERSSI): The

ERSSI, at time t, is defined as the expected value of

the signal strength when perceived at the cloud end at t.
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ERSSI is expressed as,

υsi(t) = Ψsi

P tr
si
(t)

ξ(si, dj)a
(2)

where ξ computes the Euclidean distance of the node with

the Base Station (BS), dj . P tr
si

is the transmitted power,

and Ψ is a constant that considers the other factors such

as antenna gain and antenna height [16]. In our case,

a = 1.

• Proximity with BS: The proximity of si with the BS is

given by, χsi =
√

(si.x−BS.x)2 + (si.y −BS.y)2
−1

,

where x, and y represent the abscissa, and the ordinate,

respectively.

Definition 1. The goodness G of a node si, at time t, is defined

in terms of the NRE, ERSSI, and its proximity with BS at t,

and expressed as,

Gsi(t) = Qt
si
+ g × χsiυ

si(t) (3)

where g is the normalization constant.

Motivated by the concept for quantifying the Quality of

Information (QoI) in [17], we model the QoI of the sensor

node si, based on a the confidence of data transmission, as

defined below.

Definition 2. The transmission confidence of the data from

si to the BS at time t, fsi(t), is defined as a loss/gain factor

governed by the difference of the transmitted, and received

data. It is expressed as,

fsi(t) =

{

1
N
fsi(t− 1)e(ρδ)(t), ρ = |Dsi −DBS | < ρth

1
N
fsi(t− 1)e−(ρδ)(t), otherwise

(4)

ρ and N being the absolute deviation of the transmitted and

received data, and the factor for normalization, respectively.

D represents the data, and δ is the loss/gain factor [18].

We model the QoI of every component node of CoV-I as,

Θsj (t) = fsj (t)Θsj (t− 1) + Gsj (t),Θsj (1) = 1 (5)

Equation (5) can be simplified as,

Θsj (t) =

t−1
∏

i=0

fsj (t− i) +

t−1
∑

k=0

k
∏

j=0

fsj (t− j)G(t− k − 1) (6)

= Lsj (ρ,Q, υ, χ) (7)

The total resources available is given by Ω = |S|, and Ωmin
Appi

is the minimum resources (in terms of the sensor nodes) to be

reserved for the VS of Appi. Thus, we design an optimization

problem of CoV-I as,

max

K
∑

i=1

1

PiΩAppi

ΩAppi
∑

j=1

Lj(ρ,Q, υ, χ) (8)

s.t







K
∑

i=1

ΩAppi
≤ Ω

ΩAppi
≥ Ωmin

Appi
, i = 1, 2, ...,K

(9)

Therefore,

L1(ΩApp, ρ,Q, υ, χ) =
K
∑

i=1

1

PiΩAppi

ΩAppi
∑

j=1

Lj(ρ,Q, υ, χ)

−α1

( K
∑

i=1

ΩAppi
− Ω

)

−
K
∑

i=1

β1i

(

ΩAppi
− Ωmin

Appi

)

(10)

where α1, and β1 are the Lagrangian multipliers to the

constraints. Using the gradients of L, we obtain,

δL1

δΩAppi

=
K
∑

i=1

−
Lj(ρ,Q, υ, χ)

PiΩ2
Appi

− α1K −
K
∑

i=1

β1i (11)

δL1

δρ
=

K
∑

i=1

1

PiΩAppi

ΩAppi
∑

j=1

δLj(ρ,Q, υ, χ)

δρ
(12)

δL1

δQ
=

K
∑

i=1

1

PiΩAppi

ΩAppi
∑

j=1

δLj(ρ,Q, υ, χ)

δQ
(13)

δL1

δυ
=

K
∑

i=1

1

PiΩAppi

ΩAppi
∑

j=1

δLj(ρ,Q, υ, χ)

δυ
(14)

δL1

δχ
=

K
∑

i=1

1

PiΩAppi

ΩAppi
∑

j=1

δLj(ρ,Q, υ, χ)

δχ
(15)

Solving Equations (11) through (15), we obtain Lmax
1 , that

maximizes the QoI of a VS, and optimizes the allocation of

the component nodes for varied execution priorities of end-

user applications. Having discussed the methodology to form

a VS comprising of homogeneous components within the same

region, we now present the second case of ours.

B. CoV-II: Composition of VS, and VSG across multiple

regions

This Section proposes Composition of VS (CoV-II) al-

gorithm that considers the set of compatible sensor nodes,

S = {si}, of heterogeneous types T = {t1, , t2, ..., tF },

to span across multiple regions R. Thus, in CoV-II, for a

particular VS of type tf ∈ T , ∀sj | sj .type = tf , Equation

(8) is modified as,

max

K
∑

i=1

∑

∀Rp∈R

1

PiΩAppi,Rp

ΩAppi,Rp
∑

j=1

Lsj (ρ,Q, υ, χ) (16)

s.t























K
∑

i=1

r
∑

p=1
ΩAppi,Rp

≤ Ω

r
∑

p=1
ΩAppi,Rp

≥ Ωmin
Appi

, i = 1, 2, ...,K

ΩAppi,· > 0, i = 1, 2, ...,K

(17)
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where ΩAppi,Rp
indicates the physical nodes to be allocated

for the VS of Appi at region Rp. Therefore, using Equations

((16)), and (17), we obtain the primal of CoV-II,

L2(ΩApp,R, ρ,Q, υ, χ) =

K
∑

i=1

∑

∀Rp∈R

1

PiΩAppi,Rp

ΩAppi,Rp
∑

j=1

Lsj (ρ,Q, υ, χ)

− α2

{ K
∑

i=1

r
∑

p=1

ΩAppi,Rp
− Ω

}

−
K
∑

i=1

β2i

{ r
∑

p=1

ΩAppi,Rp

− Ωmin
Appi

}

− γ2 × max (ΩAppi,·, 0) (18)

where α2, β2, and γ2 are the Lagrangian multipliers. Hence,

we have,

δL2

δΩApp,R
=

K
∑

i=1

∑

∀Rp∈R

−
ΩAppi,Rp

∑

j=1

Lsj (ρ,Q, υ, χ)

PiΩ2
Appi,Rp

−α2Kr −
K
∑

i=1

rβ2i − γ2 × sign(ΩAppi,·) (19)

where sign() returns +1 or 0 based on the positive or

negative magnitude of a quantity, respectively. Employing

Equations similar to (11) - (15), and using Equation (19), L2 is

optimized, and thus, Ω∗
Appi

is obtained. Using Equation (16),

the formation of the set of VSGs V for Appi, i = 1, 2, ...,K
is expressed as,

V = {V1,V2, ...,VK} = {Ω∗
App1

,Ω∗
App2

, ...,Ω∗
AppK

} (20)

Vi = {Ω∗
Appi,t1

,Ω∗
Appi,t2

, ...,Ω∗
Appi,tF

} (21)

such that, ∀tf ∈ T ,

∑

∀Rp∈R

1

PiΩ∗
Appi,Rp

Ω∗

Appi,Rp
∑

j=1

L
tf
sj (ρ,Q, υ, χ)

is maximized where, {sj} ∈ Stf , and
⋃

tf∈T

Stf = S . Also,

Ω∗
Appi,tj

⊂ Stj . Thus, the VSGs formed in CoV-II consist of

VSs that are formed of the physical sensor nodes optimally in

terms of the resource capacity of the nodes, and considering

the priority of the applications. The theoretical analysis of the

work is presented in Section IV.

IV. THEORETICAL ANALYSIS

Theorem 1. At a particular time t, the proposed algorithms

— CoV-I, and CoV-II are loss less.

Proof: To prove the loss less nature of the proposed CoV-

I, and CoV-II, we define the metric of losslessness, as,
∑

si ∈ Sopt−
Appi

| ∃sj ∈ Sopt,Gsi(t) > Gsj (t) (22)

where Sopt, and S−
opt are the composition of V SAppi

, and the

set of the remaining nodes of the maximal subset, respectively,

Sopt

⋃

S−
opt = S . We prove the statement by the method

of contradiction. We assume ∃si, sj for which Equation (22)

holds true. Thus, Lsi(· · · ) > Lsj (· · · ). Thus,

ΩAppi
−{sj}+{si}
∑

j=1

Lj(ρ,Q, υ, χ) >

ΩAppi
∑

j=1

Lj(ρ,Q, υ, χ) (23)

However, for CoV-I, L1(ΩApp, ρ,Q, υ, χ) is maximized. Thus,

∀sj ∈ Sopt,Appi
, si ∈ S−

opt,Appi
,

K
∑

k=1

ΩAppk
∑

j=1

Lj(ρ,Q, υ, χ)

PkΩAppk

>

K
∑

k=1

Ω−

Appk
∑

i=1

Li(ρ,Q, υ, χ)

PkΩAppk

(24)

⇒

ΩAppk
∑

j=1

Lj(ρ,Q, υ, χ) >

Ω−

Appk
∑

i=1

Li(ρ,Q, υ, χ)

⇒

ΩAppk
∑

j=1

Θsj >

Ω−

Appk
∑

i=1

Θsi ⇒

ΩAppk
∑

j=1

Gsj >

Ω−

Appk
∑

i=1

Gsi

Thus, for Appi, 6 ∃Gsj > Gsi , si ∈ Sopt−
Appi

, sj ∈ Sopt
Appi

thereby

disproving our assumption. Similarly, the same can be shown

for CoV-II. This concludes the proof.

Proposition 1. The asymptotic computational complexity

of CoV-I, and CoV-II are O({maxi=1,2,...,K Ni}
2), and

O(
r
⋃

j=1

S2
Ri

), respectively for K applications.

Proof: As CoV-I focuses on a particular region R for a

particular application,, the computational complexity of CoV-I

for K applications C(K) is expressed as,

C(K) = C1(R1) + C2(R2) + ...+ CK(RK) (25)

where Ci(Ri) is the computational complexity involved for

executing Appi over Ri. The maximal compatible set is

indicated by SAppi,Ri
. We have,

Ci(Ni) = Ci(Ni − 1) +O(Ni), Ci(1) = O(k) (26)

where Ni =| SAppi,Ri
|, and k is a constant. Therefore,

Ci(Ni) = O(N2
i ). Thus, using asymptotic algebra, Equation

(25) is simplified as,

C(K) = max
i=1,2,...,K

{C(Ri)} ' O({ max
i=1,2,...,K

Ni}
2) (27)

For CoV-II,

C(K) = O(

K
∑

i=1

Ci(R)) = O(

K
∑

i=1

Ci(

r
⋃

j=1

Rj)) (28)

Thus using Master method, we have C(K) = O(
r
⋃

j=1

S2
Ri

).

This concludes the proof.
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V. PERFORMANCE EVALUATION

This Section presents the results of evaluation of the per-

formance of CoV-I, and CoV-II. The details of experimental

setup are illustrated in Table I.

Table I: Experimental Setup

Parameters Values

Deployment Area 500 m × 500 m

Deployment type Uniform, random

Number of nodes 100
Communication energy (Ecomm) 70 nJ/bit

Energy due to computation (Ec) 30 nJ

Sensing energy (Es) 10 nJ/bit

Number of applications 3
Application priority (P) {1, 2, ..., 10}

For evaluation of the performance of CoV-I, and CoV-II, a

comparative study is performed in terms of cumulative energy

consumption, and network lifetime, as shown in Figure 2. The

metric for cumulative energy consumption E is evaluated as,

E(t) = hEcomm + eEs + Ec (29)

where Ecomm, Es, and Ec are the energy expended due to

communication (transmission, and reception), sensing, and

computation, respectively. h and e are respectively the hop

count and the total number of events at time t. Figure 2(a)

indicates that by using CoV-I, and CoV-II, the expenditure of

energy falls to respectively 34.9% and 68.4% of that while

using the maximal set of compatible sensor nodes. Thus, CoVs

perform better due to utilization of a reduced set of sensor

nodes. Consequently, it enhances the network lifetime as well,

as shown in Figure 2(b). The network lifetime N at t is

evaluated as,

N (t) =
Nmax − E(t)

Nmax

× 100% (30)

With the increase in the number of the physical nodes, the

network lifetime falls steeply in case of the maximal formation

of a VS, unlike CoVs in which the curve falls gradually. It is

observed that CoV-I, and CoV-II increases the network lifetime

by 61.04%, and 29.59%, respectively, in comparison to the

case of utilizing the maximum set of compatible sensor nodes.

In order to examine the optimal composition of the VS for

multiple applications, CoVs were executed with 3 running

applications (AppA, AppB , AppC). The priorities of the

applications are varied with time, and the change in Ωmin, and

Ωi, i = {A,B,C}, are observed. The provisioned resource to

the applications, as in Figure 3, is evaluated as,

SAppi
=

∑

Gsi | si ∈ ΩAppi
(31)

At t1 (indicated by Figure 3(a)), with the decrease in the ap-

plication priorities (the lowest indicating the highest priority),

the allocated resources, and the minimum threshold increases,
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Figure 2: Comparative study of the network parameters

as shown in Figure 3(a). At t2 (indicated by Figure 3(b)),

with the change in P , Ωmin and Ω changes accordingly. At t3
(indicated by Figure 3(c)), the priorities and Ωmin of the appli-

cations change. However, the optimality in resource allocation

is preserved. Figure 4 illustrates the optimal composition of

VS for applications AppA, AppB , and AppC under several

circumstances in terms of the resource range ϑmax
i , of each

application where,

ΩAppi
= ϑmax

i − ϑmin
i (32)

ϑmin
A and ϑmax

i denote the lower and the upper limit of the

composition of VS, respectively, and are required to evaluate

the exact composition of the VS. In case 1, as shown in Figure

4(a), all the applications have high priorities, and hence, the

optimal utilization of the physical nodes is quite high. As

the priorities of AppB , and AppC fall in Figure 4(b), the

total consumption of the physical nodes is dominated by the

demand of AppA. For a situation in which all the applications

have a low priority, the resource utilization falls appreciably

by a good extent, as depicted in Figure 4(c).

VI. CONCLUSION

This work focuses on resource efficient virtualization within

sensor-cloud infrastructure. The work addresses the problem of

optimum composition of VSs both within the same geographic

region, as well as across multiple regions by proposing CoV-I,

and CoV-II, respectively. Results show that CoVs enhance the

resource utilization to a good extent, compared to the existing

techniques of maximal allocation of the physical sensor nodes.

Future scope of research will focus on extension of this

problem from an Service Level Agreement (SLA)-based per-

spective with a view to strength the Quality of Service

(QoS) of Se-aaS. An analysis of bandwidth exhaustion of this

problem may also induce research interest.
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(b) t2 : PC < PA < PB , Ωmin = {13, 12, 14}
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(c) t3 : PB < PA < PC , Ωmin = {13, 14, 11}

Figure 3: Optimality of resource allocation based on application priority and minimum resource requirement
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Figure 4: Study of resource allocation under varied application demand and priorities
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