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Abstract—This work focuses on the quantification of node
misbehavior in wireless sensor networks (WSNs). Misbehaving
nodes are common within WSNs which are once detected, are
penalized and in some cases eliminated from the network.
However, node misbehavior might be relative i.e., a node may
exhibit maliciousness or selfishness only to a specific set of nodes
and may function normally for the rest. In these cases, a complete
elimination of the node from the network is unfair. This work
mitigates the aforesaid problem and mathematically evaluates
the extent of misbehavior of a node through the proposed Metric
of Misbehavior (MoM). Based on the Theory of Social Choice,
the proposed algorithm considers the misbehaving nodes as the
voting alternatives and the normally behaving nodes as the voters.
Based on majority ranking of social choice, eventually MoM is
obtained for every alternative in a fair manner.

Index Terms—Theory of Social Choice, Misbehavior, Quantifi-
cation, Wireless sensor networks (WSNs)

I. BACKGROUND

Wireless sensor networks (WSNs) has been one of the

most emerging areas of research in the recent times and

it has found a widespread admissibility in many real-life

fields, such as surveillance in battlefield, military systems,

traffic control, health care, and biomedical applications [1],

[2]. Conventionally speaking, in a WSN, nodes are embedded

with sensors that are capable of sensing and monitoring certain

attributes of objects or certain environmental parameters such

as humidity, temperature, and air-pressure. Now, these nodes

are deployed over a region forming a scattered network

topology. Sensing and subsequent computations are performed

on these nodes. Naturally, all algorithms, computations, and

analyses are hugely dependent on sensor reading. Hence,

every sensor should remain healthy throughout its lifetime

in terms of its battery life, local memory, internal software,

and embedded hardware performance. However, these nodes

have bounded power resources, limited computation ability,

and short transmission range.

Although contemporary research has found its way to im-

prove the security issues of a WSN, current WSNs are still

vulnerable to node misbehavior [3], [4]. Misbehaving or mis-

chievous nodes violate the network protocols and subsequently

lead to packet dropping, Denial of Services (DoS), decreased

throughput, and reduced network lifetime. The most deadly

consequences due to node misbehavior are encountered in

those networks where quality of service (QoS) is of prime

concern. Explored dimensions of misbehavior are stated as

[5], [6],

• Accidental or deliberate- Accidental factors are the un-

controlled causative factors for misbehavior whereas the

deliberate ways are the intentional reasons behind misbe-

havior.

• Selfish or Malicious- These refer to the programmed

misbehavior from the end-user perspective.

• Individual or Collusion- These type of misbehavior gen-

erally result from individual node faults due to hardware

or software failures.

Fundamental types of misbehavior of sensor nodes are

mainly categorized as overloaded, selfish, malicious, and

broken [7]. Overloaded nodes are those in which the local

resources are excessively exhausted and are thus, incapable

of processing and forwarding packets. Selfish nodes try to

optimize their resource utility at the cost of total or partial

dropping of packets from other nodes [8]. Malicious nodes

alter the data as well as the packet format, thus destroying the

integrity of the packet. Additionally, they misroute the packet

or launch DoS by silently dropping packets [9]. Broken nodes

suffer from software failure [7].

A. Motivation

Although existing literature have explored ways to mitigate

the problem of detection of misbehaving nodes [10], [11], the

true impact analysis of misbehavior has not been studied so

far. This is because, unless the influence and repercussion of

node misbehavior is analyzed, appropriate maneuver cannot be

planned. For example, a selfish node might exhibit grey hole

attack for a particular subset of nodes whereas it might be

completely normal to the rest of the nodes. Also, a node can

be malicious while forwarding packet to or from a particular

destination. Hence, the severity of any kind of misbehavior is

node-variant. Thus, the exact measure of a misbehavior can be

correctly judged only from a network perspective. Since the

term ‘misbehavior’ cannot be mathematically expressed as a

measure, it leads to a blurred perception of a misbehaving

node. Due to the fuzziness of the term ‘misbehavior’, the
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severity of it cannot be understood. Herein lies the importance

of quantifying node misbehavior and subsequently arriving

at a metric so that the criticality of misbehavior can be

mathematically measured.

B. Contribution

In this paper, we primarily focus on deriving a metric to

judge the severity of turbulence that a misbehaving node might

cause to the entire WSN. Since misbehavior is a node-variant

phenomenon, the perspective of each node of the network

must be considered while analyzing node misbehavior. Thus,

the underlying approach of this work is based on the Theory

of Social Choice, where we view a network as a society of

nodes. A measure of misbehavior is mathematically obtained

by using a ‘fair’ voting strategy complying with the social

welfare policies. This work propounds Metric Of Misbehavior

or (MoM) as a magnitude of misbehavior for each node from

the network point of view.

C. Organization of the paper

The rest of the paper is organized as follows. Section II

depicts the system model and the details of the implementation

of the theory of social choice. The performance evaluation is

presented in Section III in which the quantification of misbe-

havior is thoroughly analyzed. Finally, Section IV concludes

the work and discusses the future scopes of the work.

II. SYSTEM MODEL

This Section presents the detailed aspects of our model

based on the Theory of Social Choice. We consider a WSN

consisting of a set N of n number of sensor nodes, N =
{N1, N2, . . . , Nn}. We assume that, based on some standard

existing misbehavior detection algorithms [9], [10], [12], a set

M of m number of misbehaving nodes has been reported,

M = {M1,M2, . . . ,Mm}. So, M ⊆ N . N is the set of

voters and M is the set of alternatives. We also assume the

topology of the WSN to be a clustered one [13], [14]. For

our simplicity, we present the details of our approach for

a single cluster. However, the same algorithm can be made

applicable to multiple clusters by simultaneous execution of

this algorithm in every clusters of the network.

Modern Theory of Social Choice is based on Arrow’s Im-

possibility Theorem. Economic systems, interpret the theorem

as an event of impossibility while executing voting strategies,

i.e., if a system has atleast three alternatives and atleast two

voters, no democratic procedure can simultaneously satisfy

Pareto axiom (P) and Independence of Irrelevant Alternatives

(IIA) [15], to be discussed later. In this work, it is realistic to

consider n ≫ 2 and m ≫ 3.

Initially, the set N forms a society and each member

evaluates the members of M. A particular node Ni judges

a misbehaving node Mj and assigns a score to it θi,j . Based

on the combined preferences of each node Ni, we propose a

measure of misbehavior called Metric of Misbehavior (MoM)

for each misbehaving node Mj .

A. States of nodes

Suppose, node Ni has transmitted Ii,j number of packets

to node Mj . Oi,j out of Ii,j number of packets are further

transmitted by Mj , Also, let us assume that, Si,j number of

packets transmitted by Ni were destined for Mj . We have,

Oi,j ≥ 0, Si,j ≥ 0, ∀Ni ∈ N , ∀Mj ∈ M (1)

We now define packet drop rate γ of Mj with respect to Ni

as:

γi,j =
Ii,j −Oi,j − Si,j

Ii,j − Si,j
(2)

γ ranges from 0 to 1 and is assumed to follow a symmetrical

Gaussian distribution f(γ). Hence, mean (µ) is 0.5. The

standard deviation σ is allowed to vary within 3 times of it

as per the 3-sigma rule. A wider range of standard deviation

considers a broader possibility of misbehavior. This reduces

the probability of not considering misbehaving nodes. From

the 3-sigma rule, we already have,

∫ µ+σ

µ−σ

f(γ) dγ = 0.68 (3)

From this it follows,

∫ µ+σ

µ

f(γ) dγ ≃ 0.34 (4)

This is because only a decreased deviation from µ is

irrelevant for assessment of misbehavior as it reduces the rate

of dropping packets. Thus, we only consider deviation towards

the positive X axis. We introduce network modeled thresholds

d1, d2 and d3. d1 = 0.34. Similarly,

d2 =

∫ µ+2σ

µ+σ

f(γ) dγ ≃ 0.13 (5)

d3 =

∫ µ+3σ

µ+2σ

f(γ) dγ ≃ 0.02 (6)

From the network threshold values, we may arrive at dif-

ferent state of nodes as stated below.

i. Safe- These nodes have a very low probability of drop-

ping packets and are generally among the normally

behaved nodes of the network.

ii. Unsafe- These nodes have a moderate probability of

dropping packets i.e, they might have dropped packets

due to traffic congestion or due to some temporary

software fault. They might also be partially misbehaving

to the network. Hence, they are not completely worthy

of blame. Unsafe nodes may result in grey hole attack.

iii. Immoral- These nodes are extremely harmful as the have

a high rate of dropping packets due to maliciousness or

selfishness or over-burdening.

iii. Dead- These nodes almost stop participating from net-

work activities. Broken nodes can be viewed as dead

nodes due to the lack of potential of forwarding packets.
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We mathematically define the different state of nodes in

our system. Figure 1. depicts the state of nodes in the range

of various standard deviations.

Fig. 1: Impact of γ on the state of nodes

Definition 1. A node Ni is judged as a safe node by node

Mj , if its packet drop rate is sufficiently low, i.e.,

γj,i < µ (7)

A safe node negatively deviates from the Gaussian mean of

the packet drop rate, γ.

Definition 2. A node Ni is judged as a unsafe node by node

Mj , if its packet drop rate is moderately high, i.e.,

µ ≥ γj,i > µ+ d1 (8)

An unsafe node positively deviates from its Gaussian mean

within unit standard deviation.

Definition 3. A node Ni is judged as a immoral node by node

Mj , if its packet drop rate is sufficiently high, i.e.,

µ+ d1 ≥ γj,i > µ+ d1 + d2 (9)

An immoral node positively deviates from its Gaussian

mean within twice the standard deviation.

Definition 4. A node Ni is judged as a dead node by node

Mj , if its packet drop rate is very close to unity. We have,

µ+ d1 + d2 ≥ γj,i > µ+ d1 + d2 + d3 (10)

A dead node positively deviates from its Gaussian mean

within thrice the standard deviation.

B. Computation of Power Slag

We introduce a new term to measure the energy dissipation

rate of a sensor node. It is the Power Slag (ξ) of a node. ξ is

expressed as follows.

ξi =
Ecur,i

Eact,i
(11)

where, Eact and Ecur are the initial and current levels of

energy of node i, respectively. We assume that Eact is known

at the time of deployment and a node is capable of measuring

its current power level Ecur. ξ of a node is highly significant

as it contributes directly to selfishness or maliciousness. In this

work we use ξ as a multiplicative factor in the rate of packet

dropping.

C. Individual Preferences of nodes

After each node Ni ∈ N computes γi,j for each node Mj ∈
M, we obtain a score matrix Θ for the entire network as

follows.

Θ =

















ξ1 × γ1,1 ξ2 × γ1,2 · · · ξm × γ1,m

ξ1 × γ2,1 ξ2 × γ2,2 · · · ξm × γ2,m
. . · · · .

. . · · · .

ξ1 × γn−m,1 ξ2 × γn−m,2 · · · ξn−m × γn−m,m

















Substituting, θi,j = ξj × γi,j , θ ∈ R we get,

Θ =













θ1,1 θ1,2 · · · θ1,m
θ2,1 θ2,2 · · · θ2,m
. . · · · .

. . · · · .

θn−m,1 θn−m,2 · · · θn−m,m













Every node Ni of the network prepares its own set of

preferences. We define the key terminologies of the Theory

of Social Choice with respect to our model.

Definition 5. A binary relation Pi of a voter Ni between two

misbehaving nodes Ma and Mb is a preference if it is anti

symmetric and transitive. aPib should satisfy the following:

θi,a > θi,b, ∀Ni ∈ N , ∀Ma,Mb ∈ M (12)

For transitivity of preference, we have,

aPib, bPic ⇒ θi,a > θi,b > θi,c, ∀i ∈ N , ∀Ma,Mb ∈ M
(13)

Definition 6. A binary relation Ii between two nodes a and b

is an indifference if it is symmetric and transitive. aIib should

satisfy the following:

θi,a = θi,b, ∀Ni ∈ N , ∀Ma,Mb ∈ M (14)

For transitivity of indifference, we have,

aIib, bIic ⇒ θi,a = θi,b = θi,c, ∀Ni ∈ N , ∀Ma,Mb ∈ M
(15)

aIib, bPic ⇒ θi,a > θi,c, θi,b > θi,c, ∀Ni ∈ N , ∀Ma,Mb ∈ M
(16)

For every node Mi ∈ M, a preference set is obtained

from matrix Θ as {θ1,i, θ2,i, . . . , θn−m,i}. A weak preference

ordering Ri of a misbehaving node node Mi is defined as

the ordering that may contain both strict preferences and
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indifferences. Thus, from the preference set, a weak ordering

of preferences is obtained for each member of M as,

Ri = θ̂1,i, θ̂2,i, . . . , θ̂n−m,i (17)

The property of θ̂ 1 are:

• Property 1: θ̂j,i > θ̂k,i, if j < k, ∀i, j, k ∈ N

• Property 2: θ̂j,i = θ̂k,i ⇒ j = k, ∀i, j, k ∈ N

• Property 3: θ̂j+1,i 6⇒ θj+1,i, ∀i, j, k ∈ N

Definition 7. A preference profile P is defined as the set of

possible potential preference orderings, i.e.,

P = {R1, R2, . . . , Rm} (18)

D. Collective node preference

Having defined a preference profile P , we proceed to

introduce our social choice function (SCF). Initially, we have

an order function defined as f : Rn ⇒ R. f accepts a weak

ordering of a misbehaving node as input.

In this work, we define the SCF as a function F : Pn ⇒
M !, i.e., from the preference domain, we derive any possible

permutation of m nodes. We have,

F (R1, R2, . . . , Rn) = {M̂1, M̂2, . . . , M̂m} (19)

Now,

F (P) = F1(f(P))

or, F (f(θ̂1,1, θ̂2,1, . . . , θ̂n−m,1), . . . , f(θ̂1,m, θ̂2,m, . . . ,

θ̂n−m,m)) = {M̂1, M̂2, . . . , M̂m} = M̂ (20)

kth order of f , denoted by fk is defined as the kth highest

value of θ. fk of a node Ni is expressed as,

fk
i (θ̂1,i, θ̂2,i, . . . , θ̂n−m,i) = θ̂k,i (21)

Now, we denote fmed is the median order of f . For the

purpose of maintaining simplicity, we use fmed
i (·) instead of

fmed
i (θ̂1,i, θ̂2,i, . . . , θ̂n−m,i)

fmed
i (·) =

{

f1, when n−m is odd

f2, otherwise
(22)

where,

f1 = θ̂(n−m+1)/2,i (23)

f2 =
θ̂n−m

2
,i + θ̂n−m

2
+1,i

2
(24)

Thus, Equation (22) reduces to,

F1(f
med
1 (·), fmed

2 (·), · · · , fmed
m (·)) = M̂ (25)

1Applying the properties below, any vector V = {v1, v2, . . . , vn} can be

converted to V̂ = {v̂1, v̂2, . . . , v̂n}. Henceforth, such conversions will be
directly referenced, without casting mathematical details.

Now, for the median order value of particular node Mi, we

define π1 and π2 as the number of nodes who have voted for

Mi with a score less than fmed
i (·) and greater than fmed

i (·),
respectively. Thus,

π1,i = |j| : θj,i < fmed
i (·), ∀Nj ∈ N (26)

π2,i = |j| : θj,i > fmed
i (·), ∀Nj ∈ N (27)

We define a majority grade [16] (µ∗) from a triplet (µ−,

µo, µ+).

µ∗

i =







µ− : π1, i > π2, i

µo : π1, i = π2, i

µ+ : π1, i < π2, i

(28)

We express the majority grade in the form of (π1,i, µ
∗

i , π2,i).

E. Tie-handling in majority ranking

Handling of ties is very significant in a collective preference.

Under no circumstance, two nodes can be identically quanti-

fied with respect to their misbehavior. Majority grade of node

Mi wins over node Mj , if the following equation holds.

µ∗

i > µ∗

j ⇔ (π1,i, µ
∗

i , π2,i) > (π1,j , µ
∗

j , π2,j) (29)

Also, (µi > µj) ∧ (µ+
i > µo

i > µ−

i ) ⇔ µ∗

i > µ∗

j (30)

The condition of a tie between two nodes occurs when

µ∗

i = µ∗

j . To break the tie, we apply to check whether

(π1,i, µ
+
i , π2,i) > (π1,j , µ

+
j , π2,j) [16]. We need to have either

of the following conditions:

π1i > π1j (31)

(π1,i = π1,j) ∧ (π2,i < π2,j) (32)

A tie on the value of µ+
i is resolved with µ−

i . For this we

must have, either of the following.

π2,i < π2,j (33)

(π2,i = π2,j) ∧ (π1,i > π1,j) (34)

Similarly, if µ−

i = µ−

j , we must have either of,

π2,i < π2,j (35)

(π1,i = π2,i) ∧ (π1,j > π2,j) (36)
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F. Metric of Misbehavior (MoM)

The output of the SCF, F (·), is a linear ordering M̂ of

m misbehaving nodes. The ordering suggests the criticality

of misbehavior in the decreasing order. After obtaining the

ordering, for each node Mi, the metric of misbehavior MoM,

denoted by Ψ(Mi), is computed as follows:

Ψ(Mi) =
Γif

med
i (·)ρ(Mi)

m
∑

j=1

Γjf
med
j (·)ρ(Mj)

(37)

where ρ(Mi) is the positional rank of the misbehaving node,

Mi, in M̂, and Γi is the mean packet drop rate of the node

Mi, computed as Γi =
∑n−m

j=1
γj,i

n−m .

III. PERFORMANCE EVALUATION

The Section illustrates the details of the experimental setup,

and the corresponding results obtained. We observe the effects

of the presence of different types of node (viz. safe, unsafe,

immoral, and dead) in the vicinity of the normally behaving

nodes in terms of its energy drainage and lifetime. We also

project the impact of the mean packet drop rate (Γi) and the

residual power (ξi) on the MoM (Ψi) value of misbehaving

nodes. The experimental setup is described in tabular format

as follow:

TABLE I: Experimental Setup

Parameters Values

Deployment area 1000 m × 1000 m
Deployment type Uniform, random
Number of nodes 100

Communication range 150 m
Communication energy 20 nJ/bit
Sensing energy 10 nJ/event
Processing energy 5 nJ/bit

We consider a uniform random deployment of the sensor

nodes over an 1000m X 1000m even terrain, and the nodes are

assumed to follow multi-hop communication protocol within

the network. In Figure 2, the effect of the presence of different

types of next-hop neighbor nodes are analyzed from the

perspective of a normal transmitting node. As shown in Figure

2(a), in presence of misbehaving nodes the energy depletion

varies with the state of the node. The figure clearly indicates

that while transmitting data packets to a safe next-hop node,

the cumulative energy consumption increases marginally with

time. In presence of unsafe and immoral neighboring nodes

the energy depletion rates are observed to be comparatively

high due to large packet drop and successive retransmissions.

In case of dead nodes, however, as the mean packet drop rate

(Γi) tends to unity, the sender node ends up in huge number of

retransmissions for successful delivery of a data-packet, which

in turn, yields in significantly high rate of energy consumption.

Consequently, as shown in Figure 2(b), the lifetime of a sender

node varies in coherence with its energy depletion rate. It is

indicative that the lifetime of a node is highly affected by the

presence of misbehaving nodes in the vicinity of a normally
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Fig. 2: Impact of presence of different types of neighbor nodes

behaving node. The lifetime of a node with only safe neighbor

nodes is, in fact, observed to be almost 5 times more than that

of a node with dead neighbor nodes only.

To analyze the impact of the contributing factors on the

magnitude of MoM, we perform an experiment for 100 itera-

tions. We consider a network of 100 nodes out of which 5% are

considered to be misbehaving. At every iteration the network

is subjected to a static set of misbehaving nodes as the social

choice alternatives, and based on the decisions of the voters the

misbehaving nodes are ranked and the corresponding MoMs

are computed. Figure 3 depicts the state of the alternatives

of the society in terms of the mean packet drop rate (Γi),

residual power (ξi), and the MoM (Ψi) ∀i ∈ M after different

time-intervals (number of iterations). As a case study, we first

observe the misbehaving node with ID 1. It is noticed that the

value of Γ1 remains almost unaltered in this case, and with

the decrease of ξ1 over time, the magnitude of Ψ1 decreases

linearly. Therefore, it is derived that for constant value of Γi,

the Ψi bears a direct proportionality with ξi. On the other hand,

for the misbehaving node with ID 3, comparing Figure 3(b)

and Figure 3(c), we observe that although ξ3 decreases steadily

with time, as the value of Γ3 increases, Ψ3 also follows an

increasing trend. Therefore, it can be fairly concluded that the

effect of mean packet drop rate on the MoM is considerably

higher than that of residual power.
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For the sake of complexity analysis of the proposed algo-

rithm, we consider the execution time of the simulations as
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Fig. 3: Analysis of MoM with the variation of mean packet drop rate and residual power

a metric for evaluating the computational complexity of the

algorithm for obtaining MoM. Figure 4 indicates the variation

of the simulation time with the increase in the number of

iterations. It is clearly observed that the simulation time

is reasonably low when the 5% nodes of the network are

misbehaving. When the percentage of such nodes is increased

to 10, the algorithmic complexity increases. However, the

increase in the running time is reasonable high with 25%
misbehaving nodes. This is because the increase in the number

of social choice alternatives, necessitates the generation of

weak orderings of larger length by the voters of the society.

It is observed that even for a network comprising of 25%
misbehaving nodes, the computational time per iteration per

node approximates to 0.01 second. Therefore, the real-time

processing ability of the proposed algorithm is inferred.

IV. CONCLUSION

This work addresses the quantification of a node misbehav-

ior from a network point of view. In this work, we assume

the entire WSN to form a society comprising of the normally

behaving nodes as the voters and the misbehaving nodes as

the alternatives. Thereby, we implement the majority ranking

of the theory of social choice to arrive at a fair evaluation

of MoM for every alternatives. In future, the work can be

extended and analyzed on a real sensor network. Further, the

work can be studied for a wider range of network parameters

to maintain the Quality of Service (QoS) of a WSN.
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