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We present Limousine, a self-designing key-value storage engine, that can automatically morph to the near-
optimal storage engine architecture shape given a workload, a cloud budget, and a target performance. At its
core, Limousine identifies the fundamental design principles of storage engines as combinations of learned
and classical data structures that collaborate through algorithms for data storage and access. By unifying
these principles over diverse hardware and three major cloud providers (AWS, GCP, and Azure), Limousine
creates a massive design space of quindecillion (1048) storage engine designs the vast majority of which do not
exist in literature or industry. Limousine contains a distribution-aware IO model to accurately evaluate any
candidate design. Using these models, Limousine searches within the exhaustive design space to construct a
navigable continuum of designs connected along a Pareto frontier of cloud cost and performance. If storage
engines contain learned components, Limousine also introduces efficient lazy write algorithms to optimize
the holistic read-write performance. Once the near-optimal design is decided for the given context, Limousine
automatically materializes the corresponding design in Rust code. Using the YCSB benchmark, we demonstrate
that storage engines automatically designed and generated by Limousine scale better by up to 3 orders of
magnitude when compared with state-of-the-art industry-leading engines such as RocksDB, WiredTiger,
FASTER, and Cosine, over diverse workloads, data sets, and cloud budgets.
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1 REASONING ABOUT SCALABILITY

Continuous Data Growth and Application Diversity. We live in a world where data around us
is growing at an exponential rate both in terms of volume and velocity [28, 67, 78, 79]. Alongside
data growth, thousands of new data-driven applications are continuously created around diverse
fields such as, banking, e-commerce [46], search engines [20, 47, 77], social media [17, 41], science
[38, 81], and healthcare [80] that not only want to process and mine these data, but they also need
to do so faster than ever.
Scalability: The Ultimate Expectation From aData System. In the face of massive data volumes
and growing application diversity, the scalability requirements from a data system are multifold
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and more critical than ever. Firstly, we need systems to scale in terms of performance i.e., regardless
of data growth or application heterogeneity, we expect data systems to not only support faster
ingestion of incoming data but also facilitate faster navigation to target data regions for efficient
data extraction and query processing. Secondly, as more systems are increasingly deployed on
cloud, we need these systems to scale with respect to cloud cost i.e., based on the different budget
constraints of applications, the systems can still afford enough cloud resources to meet the target
performance.
Key-Value Stores: Backbone of Big Data Systems. Key-value storage engines are widely used
as the backbone of big data storage within a vast majority of systems [7–11, 21]. With the data
growth and application diversity, these engines are deployed on the cloud to leverage auto-scaling
of resources (bandwidth, computation, and storage) and handle workload fluctuations.
Problem 1: Fixed Designs of Existing Key-Value Stores Hurt Performance Scalability.While
existing storage engines workwell for some applications, performance-wise they do not always scale.
This is because, state-of-the-art key-value stores rely on fixed and static designs for data storage and
navigation. Fundamentally, this is sub-optimal as different applications inherently create drastically
different contexts with variability of workloads, data properties, and performance requirements.
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Fig. 1. (A) Existing storage engines fail to scale with data growth. (B) With
more data, cloud-cost grows significantly, more than 80% emanating from
purchasing high memory.

For instance,Memcached
and RocksDB are widely
used storage engineswith
Log Structured Merge
(LSM) Tree as the core
data structure. While
both engines are tai-
lored for write-heavy
workloads, they do not
guarantee optimality for
other workloads [53, 62,
63]. Fig. 1(A) highlights
this problemwith amixed

workload (R:W 50:50) executed on three widely used industrial (RocksDB [9], WiredTiger [11],
FASTER [21]) and one academic (Cosine [22]) key-value stores. For this experiment, we set a fixed
hardware with Core i5 processor and 8GB DDR4 RAM and collected the performance numbers
for 10M operations. We observe that as data grows with fixed hardware, the throughput of these
storage engines can decrease by more than 25× over time. While some reduction is expected as
hardware is fixed, the ideal scenario is one where this decline occurs with a smoother gradient,
akin to the behavior represented by the blue line. Throughout the paper, we will show how our
solution, Limousine achieves this.
Problem 2: Linear Growth of Memory Hurts Cost Scalability. The cloud-cost of storage
engines grows linearly with data as in-memory navigational structures (such as, filters and indexes)
are essentially classical data structures agnostic to underlying data patterns. These structures
consume fixed unit of memory for indexing per unit of data and blow up cloud costs for excessive
memory usage. For instance, Google reports that in practice, Bigtable (the key-value storage engine
used at Google) instances can grow so big that indexes do not fit in-memory and repeated fetching
of large index blocks into cache lead to frequent cache misses [12]. Fig. 1(B) highlights this by
providing as much hardware necessary to the scenario of 1(A) to prevent the performance drop. We
observe this blows up the cloud-cost up to 5× with about 80% of the cost emanating from buying
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Fig. 2. The architecture and workflow of Limousine to design and generate new storage engines.

compute resources or VMs with larger memory. From §2 and onwards, we show how our solution
addresses these challenges, ultimately reducing memory expenses to a more economical level.
Key Intuition 1. The design of a storage engine is characterized by combinations of multiple
data structures such as filters, buffers, cache, and indexes, that play crucial role in realizing the
core key-value operations. Our first key intuition is that, as the space of data structures is ever-
growing [48, 52], it naturally creates a massive space of design possibilities for storage engines.
Existing systems only support a single engine design each that consist of a single set of specific
data structures and algorithms. Naturally, this bounds the performance properties each system
can offer and it also bounds the kinds of performance that can be achieved since naturally it is not
possible to create literally millions of individual systems manually. Out first intuition here is “what
if we can create systems that automatically self-design to any possible system design to achieve
the best possible performance?”. In other words: “can we know all systems that are possible to
design?”. Toward this goal, we introduced Cosine [22], the first self-designing key-value storage
engine which showed that indeed it is possible to self-design the core of a system. However, Cosine
does not scale as shown in Fig. (1) i.e., it works only for scenarios involving small data sets or high
cloud budgets. Thus, the overarching question about how can we automatically design and build
systems that scale with growing dataset sizes and constrained budgets still remains.
Key Intuition 2. As the footprint of classical data structures grows linearly with data, can we
possibly explore other data structures that are more memory-optimized to create better storage
engines? Toward this, since 2018 we have witnessed learned data structures [35, 40, 42, 55, 56] the
central idea of which is to learn the underlying data patterns and properties to create much smaller,
tailored data structures. However, like any other data structure design, learned structures are not
perfect: they trade memory footprint and read performance for inferior writes. Consequently, today
we still do not have holistic learned key-value storage engines.
The Research Challenge. The research challenge is to (i) appropriately combine the best of
learned and classical data structure design principles as core storage engine design decisions to
synthesize the optimal storage engine design for any application scenario and (ii) automatically
transform any design specification to ready-to-use implementation of the resulting storage engine.

We outline the technical research questions as follows:

(1) Can we know all storage engines that are possible to design?
(2) How can we combine multiple learned and classical structures so that they collaborate to create

the perfect storage engine for any application scenario?
(3) How can we deal with the core problem that learned components, by design, are inefficient for

writes?
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(4) With so many design possibilities, how big is the overall decision space and how can we
efficiently search within it?

(5) If we know the perfect storage engine design, can we automatically materialize a ready-to-use
implementation?

We address the above technical challenges and take a step toward building self-designing and
self-materializing storage engines that scale for diverse data, applications, and cloud budgets.
Our Solution: Limousine.We propose Limousine, a self-designing key-value storage engine that
automatically instantiates the storage engine architecture to optimize cost-performance tradeoff
on the cloud. Limousine takes a workload, a cloud budget, and optionally a target performance as
input and outputs a Limousine configuration composed of the selected (i) storage engine design in
terms of multiple data structures that interact through read-write algorithms, (ii) cloud provider
and (iii) storage hardware and VMs for computation.

Limousine comprise of four key components (Fig. 2). First, Limousine creates a design space of
quindecillion (1048) storage engines (2A) by identifying the first principles of design for learned
and classical data structures, diverse hardware possibilities, and three major cloud providers (AWS,
GCP, and Azure). Limousine proposes novel algorithms to optimize read-write performance and
introduces IO cost models to estimate the performance of any engine (2B). Limousine efficiently
searches the exhaustive space to determine the near-optimal storage engine design (2C) and
automatically materializes the code for the target engine (2D).
Our contributions are as follows.

(1) We show that existing learned (PGM, FITing-Tree, RadixSpline) and classical (BTree, LSM-tree,
LSH-table) data structures share the same first principles of design. We identify two core
properties that fundamentally differentiate learned structures from classical structures and
show how a unified design space connects the two data structure paradigms (§2.2).

(2) We introduce storage engines with a new family of data structures, called clearned structures, cre-
ated by blending design principles of learned and classical structures. We show storage engines
with clearned structures are made up of diverse design possibilities leading to heterogeneous
data layouts or sub-designs for different levels of the storage hierarchy (§2.3).

(3) We introduce a design space of quindecillion (1048) storage engines comprising of (a) combina-
tions of learned (PGM, FITing-Tree, RadixSpline), classical (LSM-trees, B-trees, LSH-tables)
and clearned structures, (b) in-memory accelerators (buffers, filters, and indexes), (c) hardware
and (d) cloud providers (§2.4).

(4) We empirically identify the source of inefficient writes within learned data structures and
introduce a crammed out-of-place (COOP) write algorithm that increases storage engine
performance by up to 70%, compared to the state-of-the-art (§3).

(5) We introduce a distribution-aware IO-model to evaluate storage engine designs accurately. We
show how the model embeds data layout primitives, workloads, and data distribution within
its estimation process to achieve an average accuracy of 90% over diverse designs, hardware,
and application contexts (§4).

(6) We show how Limousine transforms the entire design space to a low-dimensional Pareto
frontier of ranked storage engines to determine the near-optimal design (§6).

(7) We show how Limousine automatically generates the code for the target storage engine in
Rust (§7).
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Table 1. List of notations used in the paper

(8) Using the YCSB benchmark, we demonstrate that on average, Limousine outperforms existing
storage engines used in industry (RocksDB, WiredTiger, and FASTER) and academia (Cosine)
by up to 3 orders of magnitude over diverse workloads, data sets, and cloud budgets (§8).

2 THE DESIGN SPACE OF LIMOUSINE
The core of storage engines is data layouts that control how data is physically organized and
stored crucially affecting the end-to-end performance. A data layout is made up of several data
structures each with a specific balance of the fundamental trade-offs of read, update, and memory
amplification [18, 48]. Consequently, there is no single data structure and no single storage engine
design that covers diverse performance requirements. Therefore, to realize Limousine’s end goal of
self-designing and materializing near-optimal storage engine architecture for different applications,
it is crucial to explore the "design space" of data layouts. Effectively, such a design space of layouts
controls the design space of storage engines by creating diverse architectural possibilities to cater
to the needs of emerging and ever-changing data-driven applications.
In this section, we introduce the existing design space of all classical data structures that are

used within modern key-value stores (§2.1). Next, we investigate the different learned layouts
possible within storage engines (§2.2) and contrast the two seemingly different data structure
paradigms. We show why it is beneficial to consolidate them as part of a single, unified design
space (§2.2) that leads to the synthesis of a novel class of data layouts, namely clearned layouts
within key-value engines (§2.3). Finally, we show how Limousine unifies all afore-mentioned data
layout variants (pure classical, pure learned, and clearned) into a single exhaustive design space
to create quindecillion (1048) possibilities of storage engine designs (§2.4) to match the needs of
diverse applications.

2.1 Background: Classical Data Structures

The Design Space for Classical Data Structures. The problem of knowing all possible data
layouts within storage engines is open and perhaps even unsolvable [50, 51]. Toward this, the Data
Calculator [52] introduced the concept of a design space for fine-grained design decisions and
learned cost models to help with evaluating designs.
The Design Continuum for Classical Structures. Although calculator conceptualizes the design
space of classical data layouts, it is intractable to navigate through this space to find optimal storage
engine design as the cardinality of the space is exponential to the number of design principles. To
this end, existing research proposes design continuums that use a small set of primitives to connect
seemingly different data structures along a continuous performance hyperplane or a Pareto frontier
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(explained in Section 9). This enables efficient navigation through parts of the design space and
opens up possibilities for self-designing and adaptive systems. In 2019, we see the first design
continuum of modern key-value stores spanning across classical data structures – LSM-Trees,
LSH-tables, and BTrees [48].

2.2 Learned Data Structure Designs

The Unexplored Design Space of Learned Data Structures. To construct the design space of
storage engines with learned data structures, it is once again crucial to identify the fundamental
primitives that capture the first principles of designing them. Further, to be able to use learned data
layouts, we should have ways to efficiently navigate through this design space and evaluate their
performance. Toward this, we first set out to contrast the design concepts for learned and classical
structures. We use Btrees as the representative classical data structure for contrasting purposes as
existing work [35, 40, 56] already establishes a link about how BTrees can be fundamentally seen
as index structures with models which are also the inherent core of learned data structures. Table 1
lists the notation used in this work.
The Structural Similarity in BTrees and Learned Indexes. There is a significant similarity in
how BTrees and learned indexes store and access data. Both these structures are hierarchical in
nature with the last level containing the base data and the other upper levels containing indexing
information. Within a level, the indexing information is stored within nodes containing elements
in a key-value format i.e., the value of an element is a pointer for BTrees and the combination of
models and pointers for learned indexes. Further, for both these structures, data within a level is
always sorted and every element (i.e., a model for learned index or a key-pointer for BTree) of a
node indexes non-overlapping data regions. For accessing base data, both these structures read
once per level to navigate through the hierarchy and reach the base data.
Difference 1: Orders of Magnitude of Size Ratios.A crucial design principle in a BTree structure
and a learned index is the fanout 𝑇 indicating the branching factor of each node in a level and
in turn, regulates the layout of the storage engine [22, 48]. In a BTree, 𝑇 is in the order of the
disk block size or Θ(𝐵) so that data is read at the granularity of disk pages to optimize the cost
of IOs. However, theoretically, 𝑇 is bounded by the maximum data to be indexed, i.e., 𝑂 (𝑁 ) and
can fall anywhere within the range of [2, 𝑁 ]. For any Btree variants (pure Btrees [25], B𝜖 -Trees
[19, 54], FD-Trees [59], CSB-Trees [66]),𝑇 never exceeds Θ(𝐵) to higher order of block sizes (𝑂 (𝐵2),
𝑂 (𝐵3), and so on) as these structures are storage-based indexing techniques that always store
block-specific metadata information in the form of pointers, or offsets, or start key of a block.
On the other hand, compute-based indexing techniques such as learned indexes can index larger
chunks of data through learned models. This allows learned indexes to tap into higher size ratios.
For instance, Ferragina et al. [39] proved that linear models can be as powerful as indexing data
that quadratically scales with block size i.e., a single linear model can index a data chunk of size
𝑂 (𝐵2). Therefore, as the model complexity increases to higher order polynomials, 𝑇 of a learned
index is expected to gradually grow further till it reaches the extremity where a single model can
index the whole data set. This brings us to the first design property unique to a learned data layout:

Property 1: The size ratio 𝑇𝑖 of any level 𝑖 of a learned layout is typically
higher than that of a classical structure with the maximum being the
amount of information that it indexes (𝑁 ) and the minimum being Θ(𝐵)
when it converges to a classical Btree.

Difference 2: Variability of Size Ratios Across Levels. There is another major distinction in the
variability of 𝑇 across levels of storage. In Btrees, every level always grows by a factor of 𝑇 which
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Table 2. Clearned layout instantiations in Limousine

is a constant for the entire storage engine hierarchy. On the other hand, for learned layouts, this is
untrue. Levels of learned layouts can be recursively constructed thereby indexing different size
and distribution of data at every level. This fundamentally brings in the new behavior of having
variable growth factor for every level depending on what data they index. For instance, in a 𝑘 (e.g.,
2)-level storage engine with learned layouts indexing 𝑁 (e.g., 1M) integers with model size being 𝑠
(e.g., 20 bytes for linear models) and 𝑝 bytes for pointers (e.g., 4 bytes), the last level of the storage
engine may contain𝑚1 (e.g., 100) models and the second last level may contain𝑚2 (e.g., 2) models
to index the𝑚1 (100) models below it. Thus, the size ratios for the last and the second last levels
are respectively 𝑁

𝑚1×(𝑠+𝑝 )
( 1𝑀
100×(16+4) = 500

)
and 𝑚1

𝑚2×(𝑠+𝑝 )
( 100
2×(16+4) = 2.5

)
.

Property 2: Unlike classical storage engines, every level 𝐿𝑖 of learned stor-
age engines has its own size ratio 𝑇𝑖 (subjected to the indexing capabilities
at 𝐿𝑖 ) and hence, each level may have a different data layout.

Unifying the Design Space of Classical and Learned Data Structures. After contrasting the
two paradigms, we observe that although there are two fundamental properties that distinctly
differentiate learned layouts, a large part of the design principles still overlap. Therefore, if we can
unify the design principles of classical and learned layouts into a single design space, it automatically
opens up a diverse space of possibilities and design opportunities.

2.3 Introducing Clearned Data Layouts

Implications of Property 1. Toward unifying the design space of classical and learned layouts,
the implications of Property 1 is to extend the domain of the existing primitive, 𝑇 (size ratio) from
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[2,𝑂 (𝐵)] to [2,𝑂 (𝑁 )]. This way the resulting design continuum [48] can accommodate more
possibilities of size ratios to be combined with the other primitives to generate new data layouts.
Implications of Property 2. Property 2 inherently introduces the possibility of designing every
level of a storage engine differently by setting different values of 𝑇 at each level of a data layout.
This naturally brings up several new design questions such as,
(1) How can we know the best layout at each storage engine level?
(2) Can we possibly create and combine data layouts of each level such that the resulting storage

engine design can be any permutation of learned and classical components?
(3) Can we translate the impact of any permutation of design decisions to end goals such as

performance or cloud cost?
As we set out to answer the above questions, we discover that this leads to the instantiation of a
family of new data layouts within storage engines that are not only different in their primitive
values but more importantly, by virtue of their construction process.
ANewClass of Data Layouts: Clearned Layouts.We introduce clearned data layouts by blending
design principles of classical and learned layouts (Table 2). To describe a clearned layout, we
introduce sub-designs or data layouts corresponding to a subspace of the storage engine hierarchy.
A sub-design is learned if the corresponding storage engine levels use learned models to index
information below it, otherwise, we call it a classical sub-design. A clearned storage engine is a
combination of one or more sub-designs covering non-overlapping parts of the overall storage
hierarchy with at least one of the sub-designs being learned. Therefore, by definition, all storage
engines with pure classical data layouts are not clearned systems as they do not contain learned
components, however, any engine with pure learned layouts qualifies as a clearned system.
Examples of Clearned Data Layouts. The right-most column of Table 2 shows examples of
existing and new clearned layouts, and in §2.4, we discuss the configuration details and definitions
of clearned sub-designs. A simple example of a clearned layout is the existing PGM [40] index
comprising of 𝐿 levels. Each level can contain any number of learned models affecting the 𝑇 and
data layout of that level, thereby leading to numerous distinct sub-designs in the overall structure.
Another example of an existing clearned structure is a FIT-ing tree [42] comprising of two sub-
designs: the first is a classical BTree that can span across multiple levels and the second is the last
index layer comprising of learned models.

In addition to the few existing structures, we permute and combine different classical and learned
components along the storage engine hierarchy to synthesize innumerable possibilities of clearned
layouts that we have not seen in the literature – C1, C2, and C3 in Table 2 are three such new
data layouts. C1 is a 3-level clearned structure comprising of two learned sub-designs at the top
followed by a BTree layer at the bottom. C2 and C3 are more complex clearned examples beyond the
realm of tree-based indexing with LSM sub-designs with implicit indexing on top [68, 70–72] and
combinations of explicit indexes with learned and BTree sub-designs at the bottom. Later, in §8.3,
we show and discuss how storage engines with these new layouts can outperform existing storage
engines e.g., storage engines with layout C1 can optimize write-performance in a read-intensive
workload and those with C2 and C3 can optimize the cost-performance tradeoff for low-budget,
mixed workloads.

2.4 Data Layouts of Limousine
We now introduce the superstructure (Fig. 3) of Limousine that contains all design primitives
necessary to create structured definitions of arbitrary data layouts and thus, arbitrary key-value
storage engines that fall in this design space. This design space comprise of storage engines with
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Fig. 3. Superstructure of data layouts in Limousine

not only all major classical (BTrees, LSM-Trees, LSH-Tables) and learned (FIT-ing Trees, PGM, and
Radix Spline) layouts but also several new clearned layouts that are uniquely distinctive in how
they blend learned and classical concepts as core design elements within modern key-value stores.
Data Layout Primitives.We use the same set of data layout primitives [22, 48] that include the size
ratio (𝑇 ) with expanded domain, merge thresholds (𝐾 and 𝑍 ) along with in-memory accelerators
such as buffers (𝑀𝐵), filters (𝑀𝐵𝐹 ), and indexes (𝑀𝐹𝑃 ) (Table 1).
Design Rules within Limousine’s Superstructure. The 𝐿-level superstructure (Fig. 3) is concep-
tually designed to contain a top sub-design utilizing log-structured storage (LSM-trees, LSH-tables,
hybrids) over 𝑋 levels and a bottom component using explicit indexing across 𝑌 sub-designs of
learned structures and Btrees. This hierarchy facilitates the realization of over quindecillion (1048)
storage engine layouts such as (i) pure log-based data layouts (for write-heavy workloads), (ii)
clearned layouts excluding log-structured sub-designs (read-heavy workloads), and (iii) other com-
binations of classical and learned structures (mixed workloads). Additionally, the superstructure
allows data classification into hot and cold categories. The upper 𝑋 levels remain hot owing to the
use of filters and indexes by classical log-based designs. The dominant primitives in this part are
𝑇 , 𝐾 , and the memory allocation across these levels. Within the remaining 𝑌 levels, each may be
configured as its own sub-design i.e., we may set the combination of the primitives𝑇, 𝐾, 𝑍,𝑀𝐵, 𝑀𝐵𝐹 ,

and𝑀𝐹𝑃 differently at every level. As learned models can be significantly more succinct compared to
classical Btrees, depending on the available memory budget and the model size, it might be possible
to cache a part of 𝑌 levels, say 𝑌1, in-memory. The rest of the 𝑌2 = 𝑌 − 𝑌1 levels can be accessed
through cascading fence pointers from the in-memory levels. There are different possibilities about
how to partition data between hot and cold levels which control the exact values of 𝑋 , 𝑌1, and 𝑌2.
In the subsequent sections, we show given any workload, how Limousine can automatically set
these values appropriately using its internal IO models (§4, §6).
Describing Existing and New Storage Engine Layouts. With the Limousine’s superstructure,
the definitions of classical storage engines remain the same as before [22]. For clearned storage
engines, we define them in Table 2. For example, a storage engine with a PGM sub-design 𝑖 and
linear models can be described by 𝑇𝑖 = 𝑘𝐵2, 𝑘 being a data-specific constant [39].𝑀𝐹𝑃 and𝑀𝐵 are
set based on available memory and the write strategy (§3) and 𝐾 and 𝑍 are set to 1 for sorted data.
Table 2 includes additional definitions of storage engine designs with existing and new layouts.

3 CLEARNEDWRITES: NO MORE ACHILLES HEEL
In this section, we address writes, one of the fundamental limitations of learned structures [39,
40, 42, 55]. We begin by analyzing and identifying the root cause of the problem on pure learned
structures. Next, we propose a new write algorithm that significantly enhances write performance
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of learned structures without degrading the read performance. Finally, we show how the proposed
algorithm can be extended beyond pure learned structures and can be generalized for the entire
space of clearned engines.

3.1 In-Place Writes on Learned Structures
The most common technique to insert data on a learned structure is to write in place (IP) [40, 42]
similar to that of a Btree. We investigate the overhead of IP writes through empirical analysis.
Problem 1: Enormous DataMovement. IP insert incurs massive data movement. First, each insert
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Fig. 4. With IP inserts, the probability of splitting a learned model can
be as high as 0.9 incurring up to 1000× data movement for merging and
reorganization of the data structure.

may lead to moving several
(all, in the worst-case) entries
within a segment to preserve
the sorted order across each
level. Second, an insert may
break the 𝜖 guarantee of a
model thereby, necessitating to
split the affected segment (or
model) and train multiple small
models to preserve 𝜖 . This, in
turn, may trigger series of splits
or merges up the storage hier-
archy. To demonstrate this, we
experiment (Fig. 4A) by varying

number of inserts on the existing PGM index build on top of 1M uniformly distributed entries, each
of size 64 bytes and record the number of splits because of the afore-mentioned reasons. We observe
that the probability of a split followed by a subsequent merge is significantly high averaging at
0.9. This incurs data movement (Fig. 4(B)), that in the worst-case can be 1000× more than the data
being inserted.
Problem 2: Eventual Degradation of Tree Structure. Even after a small number of IP inserts,
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Fig. 5. IP writes reduce model in-
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the model indexability significantly decreases. From our previous
experiment, we show the number of keys indexed per model as
1M inserts progress over time (Fig. 5). After only 20% of inserts,
the indexability drops by 5× and by the time all inserts finish,
the average indexability reduces to that of a BTree. This, in turn,
defeats the purpose of learned structures by (a) increasing the
number of levels, and its overall size, and more crucially (b) de-
grading read performance due to more number of accesses to
reach base data. To obtain the BTree baseline, we constructed a
BTree with fanout 128 on top of the base data and measured the
size of each node.

3.2 Out-of-Place Writes on Learned Structures
We propose COOP, a crammed out-of-place write algorithm that enhances performance of learned
indexes by (i) facilitating faster inserts, (ii) without hurting the read performance or the index
structure, and (iii) without introducing a massive memory overhead.
Our Core Idea. There are two core ideas COOP. Firstly, for every node 𝑗 in level 𝑖 , we keep an in-
memory buffer𝑀𝐵𝑖 𝑗

to accept incoming inserts. However, we carefully configure the buffer capacity
based on the data and the workload (explained below). We use this subscript notation to differentiate
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Fig. 6. Increasing buffer capacity improves performance up to a point beyond which it leads to diminishing
returns at the cost of high memory footprint (A, B). Although higher merge granularity reduces memory
footprint, it can bring the overall latency down only till a threshold beyond which the merge overhead
surpasses the benefits (C, D). Out of all possibilities of𝑀𝐵𝑖 𝑗

and 𝐺 , only the intersection of𝑀𝐵𝑖 𝑗
≤ 64 and

2 ≤ 𝐺 ≤ 8 offer good tradeoff properties between performance and memory (E).

node buffers (𝑀𝐵𝑖 𝑗 ) from the level buffer (𝑀𝐵𝑖
) introduced earlier in §2 as a layout primitive. The

footprint of node buffers adds up to the buffer capacity of a level, i.e.,𝑀𝐵𝑖
=
∑

all nodes at level 𝑖 𝑀𝐵𝑖 𝑗
.

When a node buffer reaches capacity, we merge the buffer with the node and propagate the changes
up the hierarchy. Secondly, we introduce another design consideration in COOP called merge
granularity 𝐺 , that captures the number of neighboring segments or models to be merged together
during a split. This parameter enables learned structures to leverage their inherent weakness
into strength by leveraging incoming inserts to reunite split models and discover new easily-
approximated patterns thereby maintaining the initial tree structure.
Investigating the Tradeoff for Buffer Capacity and Merge Granularity. Theoretically,𝑀𝐵𝑖 𝑗

can take up any non-negative value. While increasing𝑀𝐵𝑖 𝑗 can speed up inserts by accommodating
more entries, it can significantly increase the memory footprint. Further, it also slows down reads
as data can stay both within buffers and the nodes. For merge granularity𝐺 , the minimum possible
value is 0 (involving no neighbors) and the maximum can be the fanout of the previous level
indicating a maximum number of nodes in the current level. While higher merge granularity can
amortize the insert cost, it may also increase the total data movement and memory used for merges.
Therefore, it is important to explore the tradeoff space of both parameters to understand their
implications on performance and memory.
Empirical Study of𝑀𝐵𝑖 𝑗

and𝐺 .We use two data sets with uniform and skewed (Zipfian) distribu-
tion on 10M entries and two workloads with read-write ratios being 80:20 and 60:40. We use both
COOP and IP for comparison and measure the memory footprint and performance (Fig. 6). We first
analyze the tradeoff space of the in-memory buffers. As buffer size increases, memory footprint
grows (A), and latency reduces (B). However, beyond the size of 64, the memory usage steeply
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rises, but the drop in latency becomes negligible (less than 2%) suggesting diminishing returns for
both the dataset and the workloads. As 𝐺 increases, the memory footprint reduces owing to fewer
resulting models and hence, a smaller number of node buffers (Fig. 6C). This drop in footprint
is more than 10% till 𝐺 = 8 beyond which the change becomes negligible (less than 1%) as the
working memory also increases owing to larger merges. On the other hand, for all data-workload
combinations, as we increase 𝐺 , the latency of workload steeply falls till 𝐺 = 2 after which it rises
but marginally and between 𝐺 = 8 and 𝐺 = 16 the slope tends to become zero (D). This is because,
after a point, the cost of a single merge starts showing up as an overhead in the overall performance
instead of a benefit. Thus, we infer that 2 ≤ 𝐺 ≤ 8 are potential values that could provide noticeable
tradeoff properties between memory and performance for any workload.
Pruning Suboptimal Values of 𝑀𝐵𝑖 𝑗

and 𝐺 . We observe that uniformly distributed datasets
exhibit minimal pruning of COOP parameters and hence result in a wider effective design space of
storage engines with𝑀𝐵𝑖 𝑗

≤ 64, 2 ≤ 𝐺 ≤ 8. With skewed datasets, workloads tend to get localized
to specific segments of the data thereby pruning the design space drastically with qualified values
being 𝑀𝐵𝑖 𝑗

= 32, 𝐺 = {2, 4}, while still operating within the broader superset selected from the
uniform data. This demonstrates the generalizability of these insights across a wider spectrum
of data distribution and workloads. The remaining parameter space is either sub-optimal or with
diminishing returns and therefore, we prune them from Limousine’s design space.
3.3 COOPWrites for Clearned Structures

Learned and BTree Sub-Designs. For learned sub-designs, integrating COOP writes is straight-
forward as nodes of such a sub-design comprise of either multiple models pointing to data in the
next level or the base data itself. Each node contains its own buffer to accept inserts such that the
addition of new models or data is periodically reflected in the main structure after the buffer is
merged. Similarly, including COOP writes for BTree sub-designs directly follows as in principle,
a Btree layer is similar to that of learned sub-design with just a different indexability and error
bound.
Other Classical Sub-designs. Other classical sub-designs may also appear in a clearned structure,
such as an LSM sub-design or an LSH sub-design. For LSMs, the inherent write policy is already
out-of-place as the data is fundamentally stored in an immutable format. On the other hand, LSH
sub-designs follow a mix of IP updates (leveraging the hash table indexability) and out-of-place
inserts. Therefore, inserts within LSH sub-designs also remain unaffected.

4 IO MODELS IN LIMOUSINE
We now describe how Limousine estimates the IO cost of any data layout. For classical layouts,
Limousine relies on existing distribution-aware IOmodel [22] while for the clearned storage engines,
we propose new models. Given a storage engine design specification, Limousine can differentiate
designs based on the values of the layout primitives and invoke the right model accordingly.
Workload Characterization and Key Distribution. In Limousine, any workload𝑊 is expressed
using (a) 𝑤 number of operations over a universe of key-value pairs, (b) the proportion 𝜃𝑜𝑝 of
each operation type: single-result lookups, inserts, blind updates (updating the value of an entry
regardless of its current value), read-modify-writes (rmws) (updating the value of an entry based
on the current value) range queries and deletes, and (c) the distribution of the keys and workload
operations. This forms a workload feature vector.

It is crucial to express workload and data distributions in a consistent and standardized manner
such that the resulting workload feature vector can be applied to both the existing cost models
of classical storage engines and the new models of clearned engines. To this end, we follow the
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same distribution parameters as Cosine [22]: D𝑔𝑒𝑡 and D𝑝𝑢𝑡 denote uniform distribution over the
universe 𝑈 of keys for lookups and inserts, respectively. Further, skew is defined as a combination
of regular keys and special keys (likely to be accessed more than regular keys) over two distinct
universe of 𝑈2 and 𝑈1, respectively. 𝑝𝑔𝑒𝑡 and 𝑝𝑝𝑢𝑡 denote the respective probabilities of drawing a
special key for lookups and inserts (from 𝑈1) while 1 − 𝑝𝑔𝑒𝑡 and 1 − 𝑝𝑝𝑢𝑡 denote the counter-part
probabilities for regular keys (from𝑈2).
Overview. Let Ω be an 𝐿-level clearned storage engine comprising of 𝑘 sub-designs. We start with
the case when a sub-design is comprised of either learned models or storage-based indexes, such
as BTrees. Note that a Btree sub-component can be either thought of as a single sub-design or an
ensemble of multiple sub-designs (as many as the number of consecutive BTree layers) each with
identical specifications of the data layout primitives. We will use the latter conceptualization to
simplify the model intuition with the assumption that each sub-design only affects a single-level
of the structure and in this case, 𝑘 = 𝐿. The total IO cost of any clearned storage engine can be
estimated as the summation of the individual IO cost emanating from each of the component
sub-designs Ω𝑖 ∈ Ω. Therefore, for running any workload𝑊 on 𝐷 data entries stored with Ω data
layout, we estimate the performance 𝜎𝑊 (Ω, 𝐷) as:

𝜎𝑊 (Ω, 𝐷) =
∑︁
Ω𝑖 ∈Ω

∑︁
𝑜𝑝∈𝑊

𝜃𝑜𝑝 .𝜎𝑜𝑝 (Ω𝑖 , 𝐷𝑖 ) (1)

where 𝜎𝑜𝑝 denotes the per-operation IO cost ∀𝑜𝑝 ∈𝑊 . A sub-design can only index data residing
below it and hence, we denote the data indexed by Ω𝑖 as𝐷𝑖+1. Similarly, the data held by Ω𝑖 becomes
indexable to the immediate sub-design above i.e., Ω𝑖−1. At any level 𝑖 , the minimum total size of data
to be indexed can be derived from the layout primitives as 𝐷𝑖 =

𝑞×𝐷𝑖+1
𝑇𝑖

where 𝑞 is the fill-factor of
node (0 ≤ 𝑞 ≤ 1). Values of 𝑞 less than 1 accommodate several design variants such as BTrees with
partially full nodes [26, 43] and designs with gapped arrays [35]. Despite the inherent complexity
due to the strategic placement of gaps in gapped array designs, Limousine can still approximate
the impact on writes through discounted data movement (by a factor of 𝑞) by amortizing it over a
large number of writes (Table 3). For reads, the model stays the same but the IO cost changes as 𝑞
affects the height of the tree. For the rest of the section, we discuss the process of estimating the IO
cost of any sub-design which is the building block for Eq. 1.
Intuition for Modeling Reads. For both lookups and range queries (𝜎𝑔𝑒𝑡 , 𝜎𝑟𝑎𝑛𝑔𝑒 ), regardless of
other layout parameters, one access per sub-design is always necessary to reach the base data.
Further, as mentioned in §3, a sub-design Ω𝑖 of a clearned storage engine may contain in-memory
buffers𝑀𝐵𝑖+1 the value of which depends on whether the write-policy of Ω𝑖 is IP (𝑀𝐵𝑖

= 0) or COOP
(𝑀𝐵𝑖

> 0). Generalizing this layout specification, we model the cost of a read (𝜎𝑔𝑒𝑡 ) as shown in
Table 3. We use the index memory𝑀𝐹𝑃𝑖

of Ω𝑖 to clearly indicate if the sub-design is in-memory or
on-disk, i.e., Ω𝑖 is in-memory is 𝑀𝐹𝑃𝑖

≠ 0. Although we do not explicitly consider the effects of
caching, by taking into account portions of data that fit in-memory, we prevent over-estimation of
IOs and accurately estimate the cost for a very large number of queries (§8.1).
Intuition for Modeling In-Place Writes. We model the cost of IP inserts and use it as a building
block to model COOP writes. When modeling IP writes, it is crucial to consider the data movement
involved with restructuring the layout e.g., split and merge for BTree sub-designs and cost of
retraining models for learned sub-designs. As we restrict the scope of calculations only at per-level
basis, we assume that the insert cost at a given node only affects its parent, however, not every single
insert triggers merge. To model this behaviour, we first estimate the average indexing granularity
of a sub-design i.e., the average number of entries indexed by a single element (such as key-pointer
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Table 3. IO models in Limousine

pair for a Btree and a model for learned structure) of a sub-design. Within a level, any BTree key-
pointer pair indexes 𝑂 (𝐵) amount of data whereas the indexability of a linear model can typically
range between 𝑂 (𝐵) to 𝑂 (𝑘.𝐵2) where 𝑘 is a distribution-specific constant [39]. This is essentially
captured by primitive 𝑇𝑖 . However, every single insert may not trigger a merge and inserts may
be distributed to affect different indexing elements within a level. We approximate the effect of
this behavior with the key insight that, in any sub-design, if there are I elements with 𝑇𝑖 being
the average size of data indexed by each element, it would approximately take another 𝑇𝑖 inserts
to have a total of I + 1 elements in that level. If we take the example of a piecewise-linear model
on uniform data (𝑎 and 𝑏 are minimum and maximum of the distribution), the average number of
keys indexed by the model is 3 (𝑎+𝑏 )2

(𝑏−𝑎)2𝐵
2 if the keys are drawn i.i.d [39]. Therefore approximately

after every 𝑇𝑖 inserts, there will be a data movement of
3 (𝑎+𝑏)2
(𝑏−𝑎)2 𝐵

2

𝐵
(to generalize 𝐷𝑖+1/𝐵) IOs. As we

amortize this cost over 𝑇𝑖 inserts, we get 𝐷𝑖+1
𝑇𝑖×𝐵 IO per merge operation. The impact of cascading

merges is automatically accounted for as we cumulate (Equation 1) the cost of all sub-designs
within a storage engine.
Intuition for Modeling Out-of-Place Writes. We model COOP writes as merge operations
similar to that of an IP insert but periodically triggered once the buffer reaches capacity i.e., after
every |𝑀𝐵𝑖

| inserts. Further, the cost of merge is regulated by the merge granularity𝐺 (§3) with
𝛼 denoting the factor by which 𝐺 is multiplicative on performance. In principle, an IP strategy is
essentially an out-of-place algorithm in absence of a buffer or to ensure mathematical correctness
|𝑀𝐵𝑖

| = 1,𝐺𝛼 = 1 (𝜎𝑝𝑢𝑡 in Table 3).
Tuning 𝛼 . We empirically benchmark the insert performance to tune 𝛼 appropriately. For various
data sizes ranging from 10M to 100M, we measure the per-insert data movement by
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Fig. 7. 𝐺𝛼 captures the multiplicative factor of merge cost at 𝛼 = 0.3.

varying 𝐺 and compare the ob-
served values with the baseline
of a single merge 𝐺 = 0 (Fig.
7A). We plot the relative growth
in merge cost by measuring the
ratio of merge costs when 𝐺 >

0 and that of the baseline. The
observed values and the pre-
dicted values of 𝐺𝛼 are respec-
tively denoted by the dotted and
the solid, colored lines in Fig. 7B.
The accuracy is the highest at
𝛼 = 0.3.

The Cost of Accessing Base Data. The base data layer is a special sub-design that stores 𝑁
entries but has no data to index below it i.e., while Ω𝑖 is accessed for reads and writes, it does
not experience merge cost. This is because, as mentioned before merge cost emanates from data
below the current layer and hence, merges in the last level are costed in the level above. For this
level, while the cost of reads and writes stay the same, range queries incur additional costs due to
sequential reads of large number of data blocks depending on the selectivity of the query (𝜎𝑟𝑎𝑛𝑔𝑒
mentioned in Table 3).
Workload Simplicity Vs. Accuracy. For a search space with cardinality over 1048, it is crucial that
we strike a balance between simplicity (which is related to runtime of computing a near-optimal
solution) and accuracy while evaluating designs during the search process. Therefore, we simplify
the workload parameters to prevent creating an extremely high dimensional workload feature
vector: (i) query keys are drawn i.i.d from our data distributions and (ii) we abstain from modeling
intricate correlations and interleaving so that we amortize the cost of large workloads rather than
an individual query. These simplifications help maintain practical search times while still leading
to near-optimal designs as we demonstrate during our verification analysis.

5 CONCURRENCY MODEL IN LIMOUSINE
In addition to the IO cost, the performance of storage engines largely depends on the concurrency
support of the underlying hardware due to the number of available CPU cores. In this section,
we show how Limousine uses a learned concurrency model to capture the CPU performance of
storage engine designs and consolidate it with the IO cost to accurately estimate the end-to-end
performance.
Concurrency with Amdahls’ Law. The key idea of concurrency logic in Limousine is to conceive
the cost of concurrency as a separate layer that augments a speedup factor on top of the estimated
latency from the IOs model. The concurrency model is based on Amdahl’s Law [16, 44, 45] that
provides the theoretical upper bound of the speedup 𝑔, any workload can obtain for a given number
of cores 𝜂 as 𝑔 = 1

1−𝜙 (1− 1
𝜂
) where 𝜙 denotes the coefficient of parallelizable components within any

storage engine design. Within Limousine, we derive 𝜙 for every storage engine design and obtain 𝜂
from the hardware configuration (§6) to compute speedup using Amdahls’ law. The end-to-end
latency of a storage engine is then obtained as (latency due to IOs × 1

𝑔
).

Learning 𝜙 for Clearned Storage Engines. Learning 𝜙 within Limousine has two-fold challenges:
(i) as there are more than 1048 design possibilities, it is impossible to learn 𝜙 for every storage
engine for different workloads and hardware and (ii) a clearned storage engine can comprise of
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Algorithm 1 Algorithm for learning 𝜙
Input: 𝑆 , Output: 𝜙𝑠𝑖

𝑜𝑝,Ω 𝑗
// 𝜙 for 𝑜𝑝 on sub-design Ω 𝑗 for 𝑠𝑖

1: 𝑅 :
{
Learned (in-place), Learned (COOP), LSM, BTree, LSH

}
2: 𝜒 : {get, put, rmw, range, delete}
3: for each provider 𝑠𝑖 ∈ 𝑆 do
4: for each sub-design class Ω 𝑗 ∈ 𝑅 do
5: for each op type 𝑜𝑝 ∈ 𝜒 do
6: Φ𝑠𝑖

𝑜𝑝,Ω 𝑗
= NULL // set of all intermediate 𝜙

7: for each VM 𝑣 of distinct type do
8: for data 𝐷 ∈ [1M..100M] do
9: initialize Limousine with single layout Ω 𝑗

10: bulk-load the design with 𝐷 entries
11: for op count 𝑜𝑐 ∈ [1M..10M] do
12: for 𝑐 ∈ [1..𝑣CPU] do
13: 𝑇 (𝑐) = run 𝑜𝑐 ops of type 𝑞 on 𝑐 cores
14: 𝑔 =

𝑇 (𝑐 )
𝑇 (1)

15: get 𝜙𝑜𝑝,Ω 𝑗 ,𝑣,𝐷,𝑐 using Eq (2)
16: Φ𝑜𝑝,Ω 𝑗

= Φ𝑞,𝑟 ∪ {𝜙𝑜𝑝,Ω,𝑣,𝐷,𝑐

17: 𝜙
𝑠𝑖
𝑞,𝑟 = average of values in Φ𝑞,𝑟

18: function getPhiForOp(𝑜𝑝 , Ω, 𝑠𝑖 ) // Ω is full storage engine

𝜙
𝑠𝑖
𝑜𝑝,Ω =

∑
Ω 𝑗 ∈Ω (𝜙

𝑠𝑖
𝑜𝑝,Ω 𝑗

× no. of levels inΩ 𝑗 )∑
Ω 𝑗 ∈Ω no. of levels in Ω 𝑗

function getPhiForWorkload(𝑊 , Ω, 𝑠𝑖 )
𝜙
𝑠𝑖
𝑊,Ω=

∑
∀𝑜𝑝∈𝑊 getPhiForOp(𝑜𝑝,Ω, 𝑠𝑖 )× fraction of 𝑜𝑝 in𝑊

multiple sub-designs making it possible to potentially have several values of 𝜙 for different parts
of the storage hierarchy. To this end, instead of learning 𝜙 for all storage engines, we identify
five drastically different sub-designs and learn 𝜙 for each distinct sub-design. Further, for learned
sub-designs, we obtain 𝜙 for both in-place and COOP writes. To learn 𝜙 (Algorithm 1), for each
sub-design Ω and operation type 𝑜𝑝 , we benchmark 𝑔 with different VMs, different degrees of
parallelism, and data size. Every observed speedup is fed to Amdahls’ law to obtain the aggregated
final value of 𝜙 . The technical report [23] contains the learned values of 𝜙 with a walkthrough to
derive speedup for an example workload.

6 SEARCHING FOR THE OPTIMAL DESIGN

The Cloud Provider and Hardware Space. For any input of a workload-budget combination,
Limousine constructs the space of possible hardware configurations. For any cloud provider 𝑠𝑖 ∈ 𝑆 ,
Limousine uses the respective pricing policies [1–3] to compute the storage cost 𝐶storage

𝑠𝑖 of the
data and then incrementally adds compute resources (VMs) to generate hardware configurations.
If 𝑠𝑖 offers 𝑘 distinct VM types, we create the set of hardware configuration 𝐻𝑠𝑖 comprising of𝑚𝑖

individual configurations. Each configuration ℎ ∈ 𝐻𝑠𝑖 is a 𝑘-dimensional vector {𝜆𝑖, 𝑗 }, 1 ≤ 𝑗 ≤ 𝑘
where 𝜆𝑖, 𝑗 denotes the number of instances of VM type 𝑗 . Limousine adds the cost of every VM
instance in ℎ to get the compute cost 𝐶compute

ℎ,𝑠𝑖
and the total cost 𝑐ℎ,𝑠𝑖 = 𝐶

storage
𝑠𝑖 + 𝐶compute

ℎ,𝑠𝑖
. By

unifying all hardware configurations, Limousine creates the cloud-cost space 𝐶 and the hardware
space 𝐻 , ∀𝑠𝑖 ∈ 𝑆 , ∀𝑐ℎ,𝑠𝑖 ∈ 𝐶 .
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The Storage Engine Design Space. In any hardware configuration ℎ, for each VM instance 𝑣𝑖, 𝑗
with 𝑣mem

𝑖, 𝑗 memory and 𝑣CPU𝑖, 𝑗 physical CPU cores, a storage engine design space is constructed to
execute workload𝑊 . For each storage engine design Ω within that space, Limousine generates
the possibilities for each component sub-designs Ω𝑢 . Limousine computes the minimum and the
maximum number of levels, denoted by 𝐿min and 𝐿max, respectively. In principle, the minimum
number of sub-designs can happen only if all sub-designs are learned (due to maximum indexability
of models), whereas, Btree sub-designs can maximally increase the depth of a storage engine
layout. Therefore, clearned layouts can have varied depths ranging between 𝐿min = log𝐵2 ⌈𝐷𝐵 ⌉ and
𝐿max = log𝐵 ⌈𝐷𝐵 ⌉. Using the domain of layout primitives, Limousine generates the individual design
space of 𝐿max sub-designs without knowing the actual depth a clearned layout can eventually
attain after materialization. The generated design space of sub-designs of level 𝑙 is denoted as
Δ𝐿𝑙 . For any Ω𝑢 ∈ Δ𝐿𝑙 , the possibilities of 𝑇 , 𝐾 , and 𝑍 are directly obtained from the domain
values. For generating all possible allocation of memory values in Ω𝑢 , Limousine utilizes the
knowledge about the intermediate structure of Ω𝑢 . Considering 𝑣mem

𝑖,res as the available memory of
a VM, if (𝐷𝑢 × 𝐸) − 𝑣mem

𝑖,res ≤ 0, it implies this sub-design cannot be placed in-memory as there
will be no residual memory to construct the subsequent levels. Thus, possible values of 𝑀𝐹𝑃𝑢 is
max(0, (𝐷𝑢 × 𝐸) − 𝑣mem

𝑖,res ) and Ω𝑢 is placed in-memory if 𝑣mem
𝑖,res > 0 after accommodating 𝐿max − 𝑙

sub-designs. Similarly, for 𝑀𝐵𝑢 , if 𝑇𝑢 > 𝐵 (learned sub-design), Limousine assigns 𝐷𝑢+1/𝑇𝑢 node
buffers and sets𝑀𝐵𝑢 =

∑𝐷𝑢+1/𝑇𝑢
𝑗=1 𝑀𝐵𝑢𝑗

where𝑀𝐵𝑢𝑗
denotes the node buffers each configured to hold

between 0 to 64 entries. At any given level, Limousine can recognize invalid states of memory
allocation within sub-designs and automatically remove the sub-design possibility.
Search Space and Optimization. For a workload𝑊 , the overall search space Δ𝐶,𝑃 is expressed as
triplets (Γ, 𝑐, 𝑝) ∈ Δ𝐶,𝑃 implying it takes cloud cost of 𝑐 to execute𝑊 on storage engine Γ to get
performance 𝑝 . For an input budget 𝑏 and latency 𝑙 , we minimize 𝑏 and maximize 𝑙 through

argmin
(Γ,𝑐,𝑝 ) ∈Δ𝑊

𝐶,𝑃
such that 𝑝≤𝑙

(𝑐), argmin
(Γ,𝑐,𝑝 ) ∈Δ𝑊

𝐶,𝑃
such that 𝑐≤𝑏

(𝑝) (2)

Although Equation 2 formalizes the cost-performance optimization for storage engines, finding the
point of optimality is intrinsically NP-hard. This stems from the facts that (i) the domain space
of multiple design primitives, such as memory allocation across various data structures (filters,
indexes, and buffers) is inherently non-integral resulting in a countably infinite space and (ii) this
characteristic also extends to the large cardinal property [36] of overall decision space resulting from
primitive combinations. To address this complexity, Limousine focuses on discretizing the search
space for efficient navigation to find superior designs, if not the absolute optimal one. Consequently,
we refer to Limousine sub-designs and storage engine configurations as "near-optimal".
The Cardinality of the Search Space. It is impossible to know the exact cardinality as the number
of possibilities of clearned structures is tightly coupled to factors such as, the size and distribution
of the underlying base data and the complexity and accuracy of the models. For instance, for a level
𝑢, the number of design possibilities of 𝑇𝑢 is directly influenced by the data Ω𝑢 indexes and the
number of models at 𝑢. This affects the number of sub-designs and combinatorial possibilities at
the level. To simplify our calculations, we estimate the tightest lower-bound of the cardinality by
limiting to those layouts where every level has its own sub-design comprising of linear models and
BTrees only so that the maximum value of 𝑇𝑢 is 𝐵2. For an 𝑙-level structure, we can have 𝑂 (𝐵2𝑙 )
possibilities (in the order of 107 for 𝑙 = 2 and 𝐵 = 64, 4KB page size containing 64 byte records). On
top of this, if we consider node buffers for COOP and or include the simplest binary design primitive
(e.g., whether to persist a level in-memory or on disk), the cardinality of the design space blows
up exponentially. Further, as we combine the hardware space within a single cloud provider 𝑠𝑖 ,
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                                     Sub-design options for recursion

1: in-memory + BTree sub-design   3: in-memory + learned sub-design 
2: on-disk + BTree sub-design         4: on-disk + learned sub-design

. . .
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Fig. 8. The enumeration and greedy materialization of the optimal storage engine.

the cardinality of the search space becomes𝑚𝑖 × (number of possible layouts within a single VM)𝑘
[22]. Therefore for AWS, with𝑚𝑖 = 74612 and 𝑘 = 6, the cardinality of the search space goes beyond
1048 or quindecillion of possibilities. Note that, this lower-bound estimation of the cardinality
excludes several other design considerations such as, several variants for clearned layouts when
combined with classical sub-designs as well as the entire subspace of pure classical structures.
Navigating the Search Space. Once the search space is generated, Limousine navigates all
possible configurations and constructs the continuum. For each storage engine configuration
ℎ ∈ 𝐻𝑠𝑖 , Limousine first shards the workload and data using off-the-shelf sharding algorithms [34].
Next, it searches through all possible layouts within each VM and partially prunes the space by
selecting the near-optimal configuration for each ℎ.
Greedy Search of Optimal Layout. Limousine greedily constructs the near-optimal sub-design for
any level 𝐿𝑖 i.e., Limousine incrementally constructs the engine design by recursively materializing
the sub-designs in a level-by-level manner. To mathematically express the recursion of greedy
materialization, we introduce the notation of ∼ to denote levels and sub-designs in a bottom-up
manner. e.g., 𝐿1̃ is the 1𝑠𝑡 level closest to the data i.e., the last index level in a layout. We formulate
the greedy search 𝑓 :

𝑓 (𝑊 ∗, 𝑣mem
𝑖,𝑗 , 𝐷∗ ) = 𝑓

𝐿1̃ (𝑊 ∗, 𝑣mem
𝑖,𝑗 , 𝐷∗ ) + 𝑓

(
𝑊 ∗, 𝑣mem

𝑖,𝑗 − (𝑀𝐵1̃
+𝑀𝐹𝑃1̃

), 𝐷1̃

)
where 𝑓 𝐿�̃� (𝑊 ∗, 𝑣mem

𝑖, 𝑗 , 𝐷∗) generates the design space and selects the near-optimal sub-design for
𝐿
�̃�
for the specified workload, memory, and data arguments. The recursion terminates when for a

certain level 𝐿 �̃� , 𝐷 �̃� fits in a single block and 𝐿 �̃� becomes 𝐿1 for the resulting layout. We show an
example with a read-only workload to illustrate the greedy function calls as Limousine materializes
the near-optimal engine (Fig. 8). Once the space is partially pruned, Limousine follows a similar
technique to Cosine [22] to generate the continuum or Pareto frontier of cost and performance.

7 CODE GENERATION AND SELF-DESIGNING
The code of the target storage engine is materialized with a Rust-based templated key-value engine
– Limousine-engine (Fig. 2D).
Procedural Macros: The Core of Code Generation in Limousine. As Limousine-engine is
engineered to instantiate code for more than sextillions of storage engines, it is critical to ensure
that the code generation process does not pollute the namespace or the module (where it was
invoked) with boilerplate codes. Therefore, the core of Limousine-engine is designedwith procedural
macros in Rust. These macros are essentially compile-time Rust codes that take a simplistic layout
specification in the form of an input stream of tokens. When the macro is invoked at compile-time,
it automatically parses this stream and materializes the abstract syntax tree in the form of succinct
and optimized code blocks tailored for the data layout of the target storage engine.
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Instance 
Type vCPU Memory

(GB)
Hourly 
Rate ($)

r5d.large

r5d.xlarge

r5d.2xlarge

r5d.4xlarge

r5d.12xlarge

r5d.24xlarge

2

4

8

16

48

96

96

16

32

64

128

384

768

768

0.091

0.182

0.364

0.727

2.181

4.362

4.362

Instance 
Type vCPU Memory

(GB)
Hourly 
Rate ($)

n1-highmem-2

n1-highmem-4

2

4

8

16

32

64

96

13

26

52

104

208

416

624

0.0745

0.1491

0.2981

0.5962

1.1924

2.3849

3.5773

n1-highmem-8

n1-highmem-16

n1-highmem-32

n1-highmem-64

n1-highmem-96

Instance 
Type vCPU

Memory
(GB)

Hourly 
Rate ($)

2

4

8

16

20

32

64

16

32

64

128

160

256

512

0.0782

0.1564

0.3128

0.6256

0.7409

1.2512

2.5024

GCP AZURE

r5d.metal

AWS

E2 v3

E4 v3

E8 v3

E16 v3

E20 v3

E32 v3

E64 v3

Table 4. Parameters used for cloud hardware and pricing

Converting Design Primitives to Rust Generics. For procedural macros to work efficiently,
Limousine-engine is based on Rust’s parametric polymorphism or generics to allow parameter-
ization of traits, functions, structures, and enumerations to prevent code duplication and type
safety. These generics are used to translate the storage engine design primitives to unit-testable
code blocks. They allow flexibility and reusability in the code structure and simplify the process
of code generation for diverse storage engine architectures. For instance, the Model generic in
Limousine is a design primitive to include diverse methods of learning and segmentation such as
PiecewiseLinear, LinearSpline, and LinearRegression. Other examples of Limousine generics
are Search that accommodates ApproximationSearch, or BinarySearch, or LinearSearch and
Inserts to materialize both InPlace or OutOfPlace algorithms.
Materizalizing Code for Full Storage Engines. To realize the implementation of any storage
engine design, Limousine generalizes the smallest building block in the form of a Rust trait called
NodeLayer. A NodeLayer is a generic responsible for indexing any bounded set of keys through
either models (as used in clearned structures) or storage-based indexing (as in classical data
structures such as BTree variants). Regardless of the sub-design type, every node contains an 𝜖 error
bound which is set to 𝐵 for a classical sub-design and is set to 𝐵

2 for learned sub-designs to bound the
data movement of the binary search to a single disk block. Several NodeLayers can be consolidated
to form more complex traits of a storage engine such as an InternalLayer for storing the index
layers and BaseLayer for storing the base data. To allow for a common access interface for classical
and learned sub-designs, nodes are realized with pointer-to-pointer mappings i.e., each node points
to another node in the InternalLayer or a BaseLayer below. Any InternalLayer can reside
in memory or be persisted on disk. Persistence of nodes of any layer is realized in separate files
with a fill-factor so that during inserts (i) both in-place and out-of-place inserts can be seamlessly
materialized, and (ii) splitting a node is as simple as allocating a node and updating the pointers.
Limousine also includes additional optimizations such as a CacheLayer, a special NodeLayer to
cache the maximal keys within nodes to reduce data movement and memory overhead during reads
and writes.
Characteristics and maintainability of generated storage engine code. The length of the
generated code is in the order of 𝑂 (𝑛), where 𝑛 is the number of specified sub-designs of a storage
engine. Since code generation generally can grow quite complex, we made it a general design
principle of Limousine to keep themacro as simple as possible, andmovemost of the implementation
complexity to core Limousine components. These components can evolve independently of the
macro system, ensuring adaptability. At present, the lines of code (LoC) of Limousine core is about
3K. In contrast, the macro system remains relatively stable at approximately 1K LoC, regardless of
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Fig. 9. Limousine models are consistent and accurate across data, error-margins, and operations on new and
existing storage engines.

the specific data layout within the storage engine. For example, the LoC generated for a 2-level
pure learned engine is 1248 resulting in a total of about 4228 LoC with the core component. An
example of the structure of the generated code can be found in the technical report [23].

8 EXPERIMENTAL EVALUATION
We now demonstrate the self-designing ability of Limousine. First, we verify Limousine’s cost
models with diverse storage engine designs and workloads. Next, we show how the proposed
COOP algorithm outperforms existing IP algorithms on clearned structures. Finally, we show that
with its self-designing abilities Limousine scales with data, workload diversity, and cloud budgets,
outperforming state-of-the-art engines by up to three orders of magnitude.
Baselines. We compare Limousine against four classical baselines: RocksDB (LSM-tree) [9],
WiredTiger (B-tree) [11], FASTER (LSH-table) [21], Cosine [22]. For learned storage engines, as
there are no existing systems, we integrate the layout specification of PGM [40], FIT-ing Tree [42],
and RadixSpline [55] with Limousine-engine to generate the corresponding storage engine. Other
than Cosine, we set each of these baselines to their default configuration.
Datasets. We use two synthetic and two real-world datasets comprising of 10 − 100M records:
D1. synthetic data with uniform and Zipfian distributions generated with YCSB generator, D2.
lognormal dataset with values generated using a lognormal distribution with 𝜇 = 0, 𝜎 = 2 [35], D3.
longitude dataset sampled from the Open Street Maps [6] comprising of longitudes of locations
around the world and D4. longlat dataset, also sampled from the Open Street Maps [6] containing
non-linearly distributed keys generated by applying point conversion to every pair of longitude
and latitude.
Workloads. We cover all core YCSB workloads A-F, and also test with several variations including
mixed workloads with and without range queries across uniform, zipfian, and normal distributions.
Cloud Parameters for Hardware and Pricing. Table 4 specifies the VM specifications and
pricing model for evaluation and experimentation. Experiments involving high cloud budgets have
been done on a machine with Core i5 processor and 16GB DDR4 RAM.
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Fig. 10. Limousine’s cost models retain accuracy on diverse workloads on Azure cloud.

8.1 Verifying Accuracy of Limousine’s Models
Limousine’s ability to self-design and materialize scalable storage engines largely depends on
the accuracy of its models across the entire space of storage engine designs, hardware, data, and
operations. We design the process of verification in three steps.
Step 1: Verifying Models for Existing Storage Engines. To evaluate the model accuracy on
existing learned baselines i.e., PGM, FIT-ing Tree, and RadixSpline, we use dataset D1 with varying
size from 0.01M to 1M for verifying 10M reads and writes each (Fig. 9A). For each baseline, we vary
the error parameter 𝜖 and record the IO per operation. This is indicated as “Existing-𝜖" for different
designs and values of 𝜖 . We provide the corresponding layout specification as input to Limousine’s
models and estimate IO of every operation as indicated by “Lim-Model-𝜖" in Fig. 9A. We observe
that with varying 𝜖 and data size, Limousine’s models are consistent across all operations as the
shape of the prediction matches with that of the actual pattern. For lookups, as data increases, the
models have an accuracy of more than 90%. This is because the IO cost of lookups is regulated by
the number of levels and with more data, although the estimated number of models per level can
differ, this does not affect the total number of levels as the size ratio of levels differ exponentially.
For inserts, the models are 95% accurate when 𝜖 ≤ 32 beyond which the accuracy drops below 80%.
This is because larger 𝜖 allows longer data segments thereby creating higher degrees of variance in
the indexability of models within a single level which, in turn, makes the average-case analysis of
the models less accurate. In practice, this inaccuracy is not a concern as for storage engines, 𝜖 is
usually set to 𝐵

2 [40] to ensure that the data movement for every model does not go beyond 1 I/O.
Step 2: Verification on New Storage Engines.We extend the experiment to evaluate the cor-
rectness and accuracy of these models on new storage engines within Limousine’s design space.
For this purpose, we generate 6 definitions of data layouts of new designs comprising of 2-3 sub-
designs permuted differently (Fig. 9B). For each of these new layouts, we materialize the actual
implementation of Limousine-engine and repeat a similar process to obtain model estimations. We
use our proposed COOP algorithm for inserts. We notice that on average across data and operation,
the model retains an accuracy of 92% over the new designs.
Step 3: Verifying Full Worklow of Limousine on Cloud. We run the entire workflow of
Limousine on Azure cloud to verify the holistic correctness and accuracy of the models, the search
algorithm, and the eventual generation of the continuum across diverse budgets and workloads.
For this experiment, we use the first five VM types (Table 4) and workloads comprising of 90M data
entries and 30M queries with different read-write ratios. Each experiment is run on a 3VM-cluster
thereby limiting the budget to $150/month [4, 5] (Fig. 10). For each workload-budget combination,
we compare the estimated performance of Limousine’s suggested storage engine configuration with
the observed performance of the corresponding instantiation when deployed through Limousine-
engine. We observe that within Azure data centers, based on the availability of VMs, there can be
a variability of up to 15% in cloud-cost as VMs may be charged differently across different data
centers. Similarly, for performance estimations, we observe variability due to the shape estimation
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Fig. 11. COOP improves not only writes but also the overall structure leading up to 70% increase in overall
performance.

of the storage hierarchy and aligned with our observations from steps 1 and 2, this variability can
range between 7% to 20% from read-heavy to write-heavy workloads. We show this with error
bars along both the cost and performance axes. Overall, the shape of the predicted Pareto curve
matches that of the observed performance and when averaged over workload types and cloud cost,
Limousine never exceeds the budget by more than 15% or misses the performance target by more
than 18%.

8.2 COOP Outperforms In-place Writes
We provide a comprehensive performance analysis of COOP with IP strategies (Fig. 11) on PGM and
FIT-ing Tree1. Although we run this experiment on YCSB D with 95% lookups and 5% inserts [27],
we slightly alter the composition so that we can stress-test with more inserts making up to 20% and
40% of the workload (Fig. 11A and B). Although Fig. 6E presents the effective values of𝑀𝐵𝑖 𝑗

and 𝐺
to strike a balance between latency and memory consumption, the resulting parameter still space
encompass a significant number of possibilities with 441 COOP tunings (7 merge granularities X 63
buffer sizes). To streamline our results and maintain judicious experimentation, we assign informed
defaults of 𝑀𝐵𝑖 𝑗

= {48, 64} and 𝐺 = {2, 4} so that, on average, we can maximize performance
benefits across a spectrum of data sizes for both uniform and skewed workloads. We observe that
with diverse data sizes, COOP not only improves the write performance by up to 3.6× but it does
so without hurting the reads. In fact, in most cases, we observe that the read performance improves
by up to 2×. This is because COOP prevents the eventual degradation of the tree structure (§3) in
addition to reducing the data movement significantly. For mixed workloads, this leads to an overall
benefit of 4×, especially with the increase of both the data size and the number of inserts in the
workload.

8.3 Limousine Dominates Across Diverse Workloads and Cloud Budgets
We now demonstrate that Limousine can search over the exhaustive design space of storage engines,
hardware, and cloud providers and self-design the near-optimal storage engine that outperforms all
baselines across diverse workload-budget combinations. For each provider, we use the experimental
parameters used for cloud pricing policies and VM specifications (Table 4). We set AWS as the default
cloud provider for all baselines except Cosine. Fig. 12 shows 8 different experiments with varied
monthly cloud budgets ranging from $5K to $60K – Fig. 12A through 12E use the corresponding
core YCSB workload on data set D1 while Fig. 12F through 12H use a mixed workload (25% lookups,
25% inserts, 25% rmws, 25% blind updates) on data sets D2, D3, and D4, respectively. As we have
already proven Limousine’s model accuracy, we derive the results and error margins from the
models as paying for the actually experimented budgets up to $60K/month would not be practical.

1RadixSpline is a learned index that does not support inserts.
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Fig. 12. Limousine self-designs to the near-optimal storage engine architecture across diverse workload-
budget combinations.

Classical Storage Engines. For all workloads and budgets in Fig. 12, Limousine outperforms or
matches the performance of the baselines. Table 12(I) shows that for industrial classical storage
engines (RocksDB, WiredTiger, FASTER) the reduction in latency can be up to three orders of
magnitude lower. Even compared to a self-designing academic storage engine (Cosine), Limousine
achieves a latency up to 40× less as Cosine is restricted to only classical data layouts thereby being
unable to look at trillions of other design possibilities that cater to diverse workloads. For smaller
budgets (e.g., less $40K/month for A, B, D, F, G, H), Limousine scales better by self-designing storage
engines with succinct data layouts and co-optimizing hardware and budget to minimize latency. For
higher budgets, as data can be indexed within an in-memory hash table (LSH), Limousine mostly
converges to Cosine with only two exceptions. First, when the workload is lookup-only (Fig. 12C),
Limousine creates pure learned storage engines and index with a succinct radix table (inspired
by RadixSpline) on top for faster lookups. As budget grows and memory becomes affordable,
Limousine also generates non-tree-like storage designs with flat logs indexed by hash table (inspired
by FASTER). Second, when workloads are range-intensive (Fig. 12E), the data movement between
Limousine and Cosine have similar patterns with a shallower index structure in Limousine.
Learned Baselines. For learned baselines, the performance varies with the workload-budget
combinations. While RadixSpline outperforms PGM and FIT-ing tree for lookups (A-D), it does not
support inserts (E-H). PGM being a pure learned index outperforms FIT-ing tree with succinct linear
models, however, the latter takes over with inserts in the workload. On the other hand, Limousine
significantly minimizes latency with its uniquely generated clearned layouts, COOP writes, and
search algorithm to find the best design. On average, Limousine outperforms RadixSpline, PGM,
and FIT-ing tree by 2×, 30×, and 74×, respectively.

9 RELATEDWORK
As Limousine is an ongoing effort in the intersection of machine learning and databases, we discuss
areas related to instance-optimization, self-designing systems, data structures, and algorithms.
Database Tuning and Instance-Optimization. Database engineers have a long history of manu-
ally operating physical, technical, and design aspects of databases [13, 14, 24, 29, 32, 49, 65, 71]. With
growing data volumes and new cloud applications, DBMS configurations are regulated through
semi-automatic tuning through rule-based [30, 31, 33, 57, 68–70, 72] and ML-based techniques
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[37, 60, 61, 64, 75]. However, tuning marginally contributes to scalability as it does not alter the
fundamental behavior of the systems. Limousine, on the other hand, is based on a drastically differ-
ent methodology to discover and create an extensive design space for the core design decisions of
storage for fast materialization of designs that scale with cloud cost and performance.
Learned Data Structures. The space of learned data structures is growing and evolving fast [15, 35,
40, 42, 55, 58, 74, 76, 82]. While these structures offer superior read performance with a low memory
footprint, they still suffer when it comes to writes. Consequently, a comprehensive approach
to crafting holistic learned data systems that seamlessly integrate these advanced structures as
fundamental design elements remains elusive. Limousine makes it possible to realize holistic learned
systems through a wider design space of data layouts, efficient read/write algorithms on these
structures, as well as a reflection of the system design on cloud deployment and hardware.
Self-Designing Layouts. The vision of a self-designing system is to automatically create the perfect
storage and algorithms for the whole system using the first principles of design [50, 51]. Idreos et
al. proposes the Data Calculator [52] to identify the first-order design primitives that capture the
design principles of designing classical data structures. Cosine [22] took the self-designing concept
at the level of a whole system showing that it is possible to self-design full key-value storage
engines. However, Cosine does not scale with data and cloud cost. Limousine allows self-design in
a way that is scalable with data size and cloud budgets by expanding the design space of key-value
engines to include learned components that are efficiently updated.

10 OPPORTUNITIES AND DISCUSSION
Limousine showcases that it is possible to self-design scalable storage engines on the cloud with
cloud cost and performance controls. Realizing the full vision of self-designing storage engines
towards industry-ready systems includes numerous additional and exciting research challenges. For
example, such research themes include adapting storage engine designs for workload fluctuations,
expanding for more hardware and providers, and ensuring robustness guarantees as part of system
design. Furthermore, an exciting path is to consider more complex data models beyond key-value
such as the full relational model. Towards this goal, the Image Calculator takes the self-designing
concept to the space of image storage data models for AI [73].
ACKNOWLEDGMENTS. This work is partially funded by the USA Department of Energy project
DE-SC0020200.
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