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Evacuation and 
Emergency 
Management Using 
a Federated Cloud

Subhadeep Sarkar, Subarna Chatterjee, and Sudip Misra, Indian Institute of 
Technology, Kharagpur

A federated cloud computing architecture combines 

multiple private and public clouds to perform 

damage assessment, determine victim locations, and 

coordinate rescue efforts. 

atural disasters are becoming more frequent and cataclysmic every 
year. Some of the deadliest natural disasters, both in terms of fatalities 
and cost, have occurred over the last decade. The 2010 earthquake in 
Haiti and the 2004 tsunami in the Pacific belt, both causing more 
than 220,000 fatalities, were among the deadliest.1,2 According to 
Munich RE, the average number of disasters throughout the 1980s 

was 400; this increased to 630 in the 1990s, and to 730 in the last decade.3 Even in 
this modern-day world with its advanced technology, major natural disasters, such as 
earthquakes, landslide, cyclones, tsunamis, and floods, take a toll upon the human race.
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Contemporary disaster relief and evacuation 
strategies still need loads of enhancement and 
optimization. For example, in August 2005, 
Hurricane Katrina affected large parts of Louisiana, 
Mississippi, and Florida. With a death count of more 
than 1,800 and estimated damages of $108 billion, 
Katrina proved to be the costliest natural disaster 
in US history. However, officials lacked a definitive 
plan of action following the event. Local rescue 
teams, overwhelmed by the destruction, weren’t 
in a position to evaluate and analyze the storm’s 
effects and severity. Even after a partial damage 
assessment, constant communication failures led 
to ongoing pandemonium. Worst was that many of 
the already insufficient number of deployed military 
troops remained unutilized because they weren’t 
briefed and exercised in a timely manner.

Today, disaster-hit environments face the 
following major challenges4:

• Officials lack a clear plan for distributing rescue 
teams over the affected area, which impedes the 
emergency response.

• It becomes increasingly difficult for rescue 
troops arriving from outside the disaster-affected 
zone (neighboring states or countries), because 
the existing structure lacks a proper scientific ap-
proach to regulate the rescue routine.

• Traditional techniques fail to distinguish be-
tween zones in which people require immediate 
help from zones in which most of the people are 
already dead.

• Most importantly, the lack of a proper commu-
nication backbone leads to collapse of the elec-
tronic communication medium—ranging from 
emergency phone calls to social media.

Clearly, contemporary disaster relief infrastruc-
ture and methods are inadequate, time-consuming, 
and certainly not optimally designed—especial-
ly given that the first 24 to 72 hours (the “golden 
72”)—are critical to the rescue of disaster victims. 
Thus, we need an efficient and decisive emergency 
management and evacuation policy. To optimize 
such policies, it’s important to analyze huge volume 
of data generated from different sources.5

We propose using federated cloud computing to 
manage and govern the data generated in huge vol-
umes and high velocity from various data sources. 
Federated cloud computing involves multiple pri-
vate, public, and/or community clouds collaborating 
to achieve a common goal. Our proposed disaster 
relief approach also involves acquiring raw data in 
situ, and processing and aggregating this sensor 

data within the federated cloud framework to arrive 
at a consolidated and dependable analysis of a disas-
ter’s affects.

System Architecture
Figure 1 shows the high-level architecture of the 
proposed federated cloud computing platform. The 
architecture is comprised of three tiers: hetero-
geneous sensor nodes on the bottom tier, legacy 
systems in the middle, and the federated cloud com-
puting tier on the top. The architecture involves 
both primary data sources, which provide the raw 
data from the disaster-affected areas, and secondary 
data sources, which combine composite data from 
diverse data sources.

Primary Data Sources or Onsite Sensors
Contemporary sensor technology aims at complete 
sensor coverage and control (see www.sensorsmag 
.com/about-sensors). Thus, without loss of gener-
ality, we assume predeployment of several hetero-
geneous sensor nodes across the disaster-affected 
regions. Heterogeneity of sensors ensures a multipa-
rametric supervision of the regions. 

Vibration sensors. Vibration sensors can be highly 
useful in disasters such as earthquakes, tsunamis, 
and landslides. In a postdisaster scenario, data re-
ceived from these vibration sensors supports di-
saster assessment and evaluation of region-specific 
severity.

Environmental sensors. Environmental sensors 
collect rainfall amounts, temperature, pressure, 
fluid velocity, and other environmental data. Such 
deployments help the rescue personnel acquire an 
overall projection of the area’s condition following 
any natural calamity. The information provided also 
help in determining the disaster spread pattern.

Thermographic camera sensors. Also known as in-
frared camera sensors, thermographic camera sen-
sors function irrespective of ambient light.6,7 In a 
postdisaster scenario, these sensors periodically 
capture and transmit frames (generated through 
thermal imaging) to the onsite sensor cloud storage. 
These frames are analyzed within the cloud servers 
in real time to determine the location and number 
of live victims in the affected regions.

Wireless body sensors. Contemporary healthcare 
strategies envision body sensor nodes as a vital com-
ponent of advanced healthcare systems. Patients 
could wear these body sensors for both regular and 
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emergency health monitoring.8,9 Thus, we can as-
sume that some subgroup of victims in a disaster 
area (patients or elderly people) will be pre-equipped 
with body sensor nodes.10–12 The medical experts 
could analyze data from these nodes to obtain the 
physiological status of the live victims within the 
disaster-affected zones.

Secondary Data Sources: Clouds and Servers
The legacy communication tier comprises multiple 
public, private, and/or community clouds that serve 
as generic data repositories for various data types. 
These clouds provide aggregated information after 
processing the raw data obtained from their data 
sources. 

Social networking clouds. Social networking clouds 
collect information from different social network-
ing sites and publicly available portals. By analyzing 
the origin of status posts, tweets, and other feeds, 
rescue teams can identify zones in which clusters of 
victims are trapped.

Social media clouds. These cloud platforms gather 
data from different social media sites and aggre-
gate it to provide information about the emergency’s 
severity across the affected regions. Through in-
terviews and surveys, media personnel obtain data 
directly from the victims or the victimized spots and 
feed it to the cloud, thereby providing a thorough 
analysis of the state of the disaster areas.

Healthcare clouds. Healthcare clouds collect physi-
ological data from various body sensor nodes from 
the onsite sensor data tier, and process it for real-
time and remote monitoring and analytics.

Onsite sensor clouds. These clouds gather real-
time sensor data in situ. They collect heterogeneous 
data from varied sensor nodes and aggregate it 
meaningfully.

Communication servers. These servers primar-
ily manage information originating from telephonic 
communication. During an emergency, when people 

Federated cloud

Social media
cloud

Social
networking

cloud

Healthcare
cloud

Healthcare data
Heterogeneous
sensor data

Data feed for disaster
assessment and analytics

Data extraction through
opportunistic communicationOnsite sensor

cloud

Cloud
collaboration tier
(federated cloud)

Legacy
communication tier

(secondary data
sources)

Onsite sensor
data tier

(primary data
sources)

Communication
servers

Optimize rescue
operation

FIGURE 1. Federated cloud architecture for emergency management. The three tiers include heterogeneous sensor nodes, legacy 

systems, and a federated cloud.
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in the affected areas engage in frequent commu-
nication with their families and relatives through 
phone calls, short message service (SMS), or multi-
media message service (MMS), data about the origin 
and destination of these communications can lead 
rescue workers to victims. They can also use the in-
formation stored in these servers to assess the disas-
ter’s spread and evaluate its severity.

Clouds in Collaboration: Federated Clouds
Using a federated cloud for emergency management 
enables us to arrive at a reliable and plausible as-
sessment, and evaluate the different aspects of a di-
saster. In a disaster scenario, a singular data source, 
such as onsite sensors, might be temporarily non-
functioning, leading to inaccurate or inadequate in-
formation for analysis. Or, one of the cloud servers 
might be down because of overwhelming traffic con-
gestion, causing interruption and cessation of com-
putation. In such conditions, multiple data sources 
are likely to provide more stable and decisive infor-
mation. Therefore, federation aims to unify hetero-
geneous primary and secondary data sources, and 
eventually concludes with an acceptable decision. 

The proposed federated cloud considers the 
management and coordination of multiple organi-
zational and nonorganizational clouds following 
diverse models. In addition, it synchronizes and 
analyzes the data from the component clouds to 
perform real-time analysis of the damage’s severity. 
Finally, to ensure real-time event-driven decision 
making, federation takes into account advanced big 
data management techniques and principles. Our 
system structures, processes, and stores the vast and 
copious heterogeneous data arriving at the federated 
cloud server using advanced big data classification 
algorithms.

Network Communication and Data 
Management
It’s important to analyze the data obtained into con-
solidated information, and thereby make efficient 
decisions concerning the rescue and evacuation 
operation. We segregate the data management poli-
cies into two categories: within network and within 
cloud servers.

Within Network: Opportunistic Communications
Network congestion, channel blocking, and heavy 
packet drops due to collisions are common prob-
lems in disaster scenarios. Moreover, because vic-
tims typically move randomly and frequently, mobile 
communication challenges are prominent. Thus, 
emergency management also involves resolving the 

communication difficulties that generally arise in 
disaster zones. To avoid the collapse and disinte-
gration of the communication network, a disaster 
management system should identify victims’ spatial 
distribution. 

The network communication server analyzes 
packet drops and failures to identify regions of 
handoff failure. In addition, the communication 
server gathers mobile communications data to en-
able opportunistic connections in these regions, 
and network resources are dynamically shared using 
conventional network allocation algorithms. Rescue 
teams are mobilized using vehicles equipped with 
smart mobile communication devices. The devices 
trap communication signals and analyze them to 
obtain the spread and intensity of the disaster and 
determine the optimal routes for rescue operations. 
This enhances the opportunity for rescue teams and 
officials to contact and connect with victims. The 
mobility model also supports efficient and reliable 
packet delivery. Thus, opportunistic communication 
in an emergency scenario can reduce the number of 
communication failures.

Within Cloud Servers: Big Data Analytics
Once the cloud server gathers data from primary 
and secondary sources, a major challenge is manag-
ing this high-velocity, voluminous data. The data’s 
heterogeneity adds to the complexity of inferring 
and interpreting the data. For example, in March 
2011, Japan experienced an 8.9 magnitude earth-
quake and subsequent tsunami on its coasts. This 
event triggered a record number of tweets across the 
country. An overwhelming rate of 5,530 tweets per 
second collapsed the entire communication system 
within minutes. Given that the typical average was 
600 tweets per second, the servers were prostrated 
by the high number of requests. Such a scenario de-
mands an infrastructure capable of managing a high 
velocity and volume of data—in other words, a big 
data management system.

With approximately 1.2 billion smartphone us-
ers worldwide, recent calamities have led to peak 
request-handling rates for social networking sites. 
Voice communication over mobile phones also 
peaks following any calamity. We envision using 
all these data, generated from the disaster-affected 
areas, to analyze the severity of the damage and 
coordinate rescue troops accordingly. The big data 
dealt with in this context is representative of the 
collective datasets acquired from social networking 
sites, social media, and onsite sensors. We analyze 
these digital data alongside the analog communica-
tions data that’s generated from voice calls made 



72 I EEE  CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

E
M

E
R

G
E

N
C

Y
 M

A
N

A
G

E
M

E
N

T

over telephones. We classify the analysis run on the 
federated cloud platform into five broad categories. 

Communications origin. In a postdisaster sce-
nario, a victim’s main concern is ensuring that 
his or her family members and close friends are 
safe and secure. Thus, many phone calls originate 
from disaster-affected areas. It’s easy to track the 
origin and destination of analog voice communica-
tions. In addition, most smartphones being sold to-
day are GPS-enabled, making it easier to track users’ 
locations. To determine the origins of data commu-
nications, such as status messages, tweets, and so-
cial networking site posts, we’ll run analytics on the 
datasets. For onsite sensor nodes, we can trace data 
packets’ origins by their content. After ascertaining 
the origins of all the communications taking place 
in the vicinity of the disaster, we construct sepa-
rate cluster diagrams for each mode of communica-
tion. These diagrams act as frequency maps (similar 
to heat maps), and provide significant information 
about the damage severity by area.

Data severity. The onsite sensor nodes also provide 
important environmental data from the affected re-
gions. A heterogeneous deployment of these sensor 
nodes provides a wider variety of data. The signifi-
cance of the different data types acquired from the 
sensor devices is often disaster specific. For exam-
ple, for an earthquake-affected region, vibration and 
temperature sensor data is instrumental, whereas 
fluid-velocity and pressure sensor data is highly val-
ued in a flood or tsunami scenario.

Clusters of living victims. The significance of the data 
acquired from the body sensor nodes, however, is 
pivotal, irrespective of the disaster type. These body 
sensor nodes give the locations and current health 
conditions of living victims. Rescue workers can use 
this data to identify regions in which clusters of living 
people are trapped, and helps us distribute and chan-
nel rescue and medical support teams accordingly.

Infrared images generated by thermographic 
camera sensors are useful in identifying zones in 
which victims are trapped. These images help dis-
tinguish the zones in which people are trapped alive 
from those in which there are no living victims. Fur-
ther sequential analysis of the frames gives us some 
idea about victims’ mobility patterns and clustering, 
which becomes crucial in dynamic route determina-
tion for rescuing and safeguarding victims.

Keyword identification. Keyword identification in-
volves data mining and natural language processing. 

In the first step, we identify the keywords and assign 
weights to rank them according to their impact, in 
the context of a disaster-hit environment. Based on 
these weighted ranks, we conduct a region-specific, 
real-time analysis of the tweets, posts, and statuses 
posted through social media. Through this keyword 
analysis, we can estimate the zonal severity of the 
disaster, which supports optimal distribution and 
coordination of relief workers and medical troops.

Disaster spread pattern. Real-time geospatial 
analysis of the data acquired by the different sen-
sor devices shows the dynamic spread pattern for 
the disaster. Most disasters, such as flood, storms, 
and tsunamis, spread along collocated regions with 
time. In addition to real-time analysis of sensor data, 
feeds acquired from social media assist in determin-
ing the disaster spread pattern. Based on this infor-
mation, official can issue alerts, evacuate citizens in 
advance, and plan dynamic relief operations.

Rescue and Evacuation Strategy
Motivated by the limitations of contemporary rescue 
strategies, we illustrate our proposed techniques for 
evaluating rescue teams. In addition to managing 
data, an evacuation system must assess details about 
the rescue troops to be deployed, including their 
size, equipment, routes, and coordination.

The system must determine rescue routes and 
evacuation strategies based on the severity of dam-
age in the affected regions. Figure 2 illustrates the 
control and data flow within the system’s functional 
components. After acquiring data from the primary 
and secondary data sources, the cloud servers feed 
the data into the federated cloud environment. It 
obtains surface plots corresponding to each second-
ary data source, which it superimposes to generate 
a single, aggregated 2D projection. From the resul-
tant 2D plot, we obtain a composite utility metric for 
the constituent zones of the entire disaster area. We 
divide the entire victimized terrain into equal-sized 
zones for region-specific examination and interpre-
tation, and perform subsequent zonal analysis to 
quantify the zonal severity. Additionally, we formu-
late the distribution of clusters of live victims and 
the disaster spread pattern. By combining the zonal 
utility and the distance between each pair of zones, 
we evaluate the zonal costs. Eventually, we obtain a 
zonal ranking by executing the cost-based traveling 
salesman algorithm. The system analysis also facili-
tates proactive predeployment of rescue workers in 
zones where the disaster and its consequent effects 
are predicted to spread, creating the opportunity for 
evacuating people from the suspected regions.
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Example Case Study: Earthquake
We assume a postdisaster situation following an 
earthquake spread over an 800 × 240 meter ter-
rain. The epicenter is located at [500, 150], and the 
quake’s magnitude is taken as 9.6 on the Richter 
scale. The population within the zone at the time 
of the earthquake is 50,000. We assume a prede-
ployment of 120 vibration sensors over the affected 
area. The processes of social media feeds and mo-
bile communications are generally stochastic in na-
ture,13 although they follow a Poisson distribution 
under normalcy. The terrain is divided into 16 non-
overlapping, exhaustive, equal-sized zones.

Geospatial Analysis
Initially, we observe the data reported by the pre-
deployed onsite vibration sensors (Figure 3). The 
surface plot in Figure 3a illustrates the data as 
reported by the vibration sensors.14 The x- and 
y-axes denote the length and breadth of the af-
fected zone, respectively. The z-axis indicates the 
data from the vibration sensors, aggregated into 
interpretable Richter scale magnitudes. Having 
obtained the surface plot of the data from the vi-
bration sensors, the data is projected over a 2D 
plane, as Figure 3b shows. The heat map, thus 

obtained, illustrates the earthquake’s spread over 
the terrain. As the color bar indicates, regions expe-
riencing the quake at a higher magnitude are darker 
whereas those experiencing the earthquake at a less-
er magnitude are lighter.

Figure 4 demonstrates the attempts at mobile 
communication to and from the affected regions. 
Figure 4a shows the 3D plot depicting the number 
of telephone calls attempted per second after the 
earthquake. The darker crests indicate a higher 
number of attempts, and the lighter troughs repre-
sent fewer call attempts over the terrain. The 2D 
projection in Figure 4b provides a clear manifesta-
tion of the regional density of voice communication 
attempts per second.

Finally, Figure 5 shows the average number of 
social network feeds per second. The darker crests 
indicate a large number of social network feeds be-
ing generated, and the lighter troughs indicate fewer 
feeds. The projection of Figure 5a is shown in Fig-
ure 5b. The figure shows the variation in number of 
social network feeds over the 16 zones.

Rescue and Evaluation Policies
In the first step, for the set of all 16 zones Z = {Z1, 
Z2, …, Z16}, we normalize data from the three heat 
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FIGURE 2. Diagrammatic representation of the federated cloud system’s control and data flow. The figure illustrates the flow of 

the internal processes and the coherence of the various functional modules within the system.
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maps, as shown in Figures 3b, 4b, and 5b. Next, we 
compute a composite utility value ζx,y, ∀x ∈ X, y ∈ 
Y, at every coordinate of the disaster-affected area. 
For each zone Zi, we derive the mean zonal utility 
ζZi as 

ζ

ζ

z

x y

x X Z y Y Z

i
x

i
yi

i
x

i
y

Z Z
=

×
∈ ∩ ∈ ∩

∑ ,
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where X and Y are the sets of integral abscissas 
and ordinates of the entire victimized area, 
respectively, and Zi

x  and Zi
y  are the sets of abscissas 

and ordinates within zone Zi, respectively. Having 
obtained ζz={ζz1

,ζz2
, ...,ζz16

}, as Figure 6a indicates, 
we want to determine the final zonal ordering 
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rescue teams should visit the victimized zones. For 
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where dZ Zi j,  is the distance between the respective 
zones. Thus, in our case, the traveling salesman 
problem (TSP) considers Ψ as the computational 
cost. We express the TSP as, given a zone Zi, we 
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FIGURE 3. Geospatial analysis of data from vibration sensors: (a) 3D surface plot and (b) projection over a 2D plane.
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As per our case study, we obtain a final zonal 
ordering of {Z14, Z10, Z11, Z7, Z6, Z2, Z3, Z12, Z15, Z16, 
Z13, Z9, Z5, Z1, Z4, Z8}, as Figure 6b shows. From 
the given values, we derive the zonal severity and 
formulate the dynamic cluster formation of living 
victims and the disaster spread pattern. 

With current emergency management technolo-
gies, rescue teams would have visited the affected 
regions randomly or on a first-come, first-served 
manner, either of which would be sloppy and inef-
ficient, thereby leading to disorganized and ineffec-
tive emergency management.

uture work will extend this research by devel-
oping a generic mathematical model for differ-

ent types of disasters and designing the analytics 
for individual disaster types. We’ll also explore the 
characterization of the disaster spread pattern and 
its correlation with the human mobility model. An-
other research area of interest is the optimization of 
rescue routes based on the disaster spread patterns.
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