
SENSORS-AS-A-SERVICE: TOWARDS THE
CONCEPTUALIZATION OF SENSOR-CLOUD

Subarna Chatterjee

SENSORS-AS-A-SERVICE: TOWARDS THE
CONCEPTUALIZATION OF SENSOR-CLOUD

Thesis submitted to the
Indian Institute of Technology Kharagpur

for award of the degree

of

Doctor of Philosophy

by

Subarna Chatterjee

Under the guidance of

Dr. Sudip Misra

Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Kharagpur - 721 302, India
July 2017

c©2017 Subarna Chatterjee. All rights reserved.

CERTIFICATE OF APPROVAL

20/07/2017

Certified that the thesis entitled Sensors-as-a-Service: Towards the Conceptual-
ization of Sensor-Cloud submitted by Subarna Chatterjee to the Indian Institute
of Technology, Kharagpur, for the award of the degree Doctor of Philosophy has been
accepted by the external examiners and that the student has successfully defended the
thesis in the viva-voce examination held today.

(Member of DSC) (Member of DSC) (Member of DSC)

(Supervisor)

(Internal Examiner) (Chairman)

CERTIFICATE

This is to certify that the thesis entitled Sensors-as-a-Service: Towards the Con-
ceptualization of Sensor-Cloud, submitted by Subarna Chatterjee to Indian In-
stitute of Technology Kharagpur, is a record of bonafide research work under my super-
vision and I consider it worthy of consideration for the award of the degree of Doctor of
Philosophy of the Institute.

Date: 20/07/2017
Dr. Sudip Misra
Associate Professor
Department of Computer Science &
Engineering
Indian Institute of Technology Kharagpur
Kharagpur - 721 302, India

DECLARATION

I certify that

a. The work contained in the thesis is original and has been done by myself under
the general supervision of my supervisor.

b. The work has not been submitted to any other Institute for any degree or diploma.

c. I have followed the guidelines provided by the Institute in writing the thesis.

d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct
of the Institute.

e. Whenever I have used materials (data, theoretical analysis, and text) from other
sources, I have given due credit to them by citing them in the text of the thesis
and giving their details in the references.

f. Whenever I have quoted written materials from other sources, I have put them
under quotation marks and given due credit to the sources by citing them and
giving required details in the references.

Subarna Chatterjee

Dedicated to
My parents, my sister, and Subhadeep

ACKNOWLEDGMENT

Writing this part of the dissertation is probably the toughest. Though the list of peo-
ple to acknowledge is long, making this list is not difficult. The difficult part is to find
the words that convey the sincerity and magnitude of my gratitude. People unknown to
me till a few years before, have become indispensable in my life, while the people already
known to me, remain pillars of support and encouragement all these days. It is because
of their presence that I am here now.

First and foremost I would like to express my deepest gratitude to my supervisor
Dr. Sudip Misra for his invaluable guidance and encouragement throughout my work.
His constant motivation, support and infectious enthusiasm have guided me towards
the successful completion of my doctoral study. My interactions with him have been
of immense help in defining my research goals and in identifying ways to achieve them.
His encouraging words have often pushed me to put in my best possible efforts. Above
all, the complete belief that he has entrusted upon me and has instilled a great sense
of confidence and purpose in my mind, which I am sure, will stand me in good stead
throughout my career.

It gives me immense pleasure to thank my doctoral scrutiny committee members Dr.
P. Mitra, Dr. K. S. Rao, and Dr. G. Das for their valuable suggestions during my re-
search tenure. My sincere thanks to the ex-Head of the Department of Computer Science
& Engineering, Dr. Rajib Mall, and the current Head of the Department of Computer
Science & Engineering, Dr. Sudeshna Sarkar, for the world class infrastructure provided
in the department to the research students. In this regard, it is also worthy to thank
Tata Consultancy Services (TCS), Google, and Facebook for supporting my Ph.D. in
terms of monthly fellowships, flexible contingency grants, and travel grants. I also thank
all faculty members of Department of Computer Science & Engineering for their helpful
comments and constant encouragement. I sincerely remember the support of office staffs
Mithunda, Somadi, Malayda, Vinodda, Pratap da, Utpal Da, and others.

I wish to convey my special thanks to my friends Subhadeep, Amit, Manasa, Anir-
ban, and Procheta Di for their constant support and help during the various stages of

ix

my work. I would really like to thank Mr. Samir Banerjee for his constant support that
has helped me sort out several additional things. I am greatly indebted to many of my
friends for their constant inspiration. The support of my group mates namely Samaresh
Da, Ayan, Arijit Da, Sanku, Barun Da, Sankar Da, Prosenjit Da, Anandarup Da, Ta-
monghna Da, Goutam da, Nabiul Da, Judhistir Da, Soumen Da, Sumit Da and many
more. It is a great fun and source of ideas and energy to have friends like Pratik Da,
Snighdha Di, Debasmita, Achutananda, Parakrant, Tuhin Da, and many more during
my stay at IIT Kharagpur.

Acknowledgment certainly remains incomplete if I do not write anything regarding
my parents and my sister, whom I love the most. Due to my studies, they have sacrificed
a lot since my childhood days. Their priceless affection, spontaneous encouragement,
dedication to build myself a good human being are the pillars of my strength to achieve
goals which are almost next to impossible. No word is enough to express their contribu-
tions to my life. Finally, I am grateful to my school teachers, well wishers, elders in our
native place for their blessings.

Subarna Chatterjee

x

Abstract

Wireless Sensor Networks (WSNs) have enhanced the standard of living of mankind with
the touch of advanced technology and the manifestations of this fact are found in numer-
ous real-life applications. However, all of these WSN-based applications are single-user
centric, in which a user-organization owns and deploys its personalized sensor network
and typically does not share the accessed data to another party (user/organization).
Also, the data sharing policies vary across organizations and an external user-organization
is able to retrieve sensor information that is specific only to the region that is admin-
istered by the network administrator. Thus, generally, only user-organizations that
own a sensor network have satisfactory access to sensor data. To address these issues,
recently, sensor-cloud infrastructure has been conceived as a potential solution for multi-
organization WSN deployment and data access.

Sensor-cloud infrastructure acts as the interface that connects the physical world
(attributes of which can be measured using sensor based devices) and the cyber world
of inter-computer communication through excellent data scalability, on-demand service
provisioning, remote data visualization, and user programmable analysis. The idea of
sensor-cloud thrives on the principle of virtualization of physical sensor nodes. The user-
organizations possess their own applications, and request the sensor-cloud for retrieval
of sensed data. These requests are interpreted within the sensor-cloud environment, and
the physical sensor nodes are dynamically consorted to form Virtual Sensors (VSs), as
per requirements. Aggregated data from the VSs are transmitted to the end-users in
the form of a simple obtainable service (just as electricity, or water), named Sensors-as-
a-Service (Se-aaS). Sensor nodes are hereby transformed from a typical ‘hardware’ to a
simple ‘service’, which is cheap, convenient, user-friendly, and scalable.

Currently, the principles, ideology, and challenges involved in this paradigm shift
from traditional WSNs to sensor-cloud platforms are being explored. However, the
technicalities that are required from an implementation perspective, inclusive of the
theoretical modeling, experimental analysis, architectural designs, and development of
this platform, are unexplored till date. This dissertation focuses to resolve the principal
technical challenges associated with the complete conceptualization of sensor-cloud and
eventually aims to build a fully-functional prototype of sensor-cloud infrastructure.

A summary of the major works reported in this dissertation is described as follows.

xi

From an implementation point of view, the scope of technical and theoretical research
have been identified in this domain. Initially, the focus is on the theoretical modeling
of virtualization of physical sensor nodes within sensor-cloud. The necessity for this
paradigm shift to a sensor-cloud platform is mathematically justified for all WSN-based
applications. Eventually, the work endeavors to establish the idea of Se-aaS. Next, the
design issues of sensor-cloud platforms are addressed. Conventional data transmission
techniques involve periodic packet transmissions from sensor nodes to the cloud-servers
for computation, storage, and processing. However, the rate of change of the physical
environment may not be reasonably significant, thereby, leading to redundant packet
transmissions and inefficient utilization of network resources. In this regard, a dynamic,
adaptive, and optimal caching has been designed that preserves the accuracy of infor-
mation, and conserves the network resources, simultaneously. Followed by this, the
economics of the infrastructure is investigated. Within sensor-cloud infrastructure, the
end-users utilize the physical sensors and the cloud infrastructure as per their demand
and pay as per their usage, to the cloud service provider (CSP). Thus, to quantify the
usage of the end-users and charge them accordingly, a dynamic and optimal pricing
scheme is designed, specifically for Se-aaS. The networking dimensions of sensor-cloud
have also been considered – the problem of routing and channelization of the data of the
VSs, originating from multiple regions, to geographically distributed sensor-cloud data
centers (DCs) is investigated. To resolve this issue, an algorithm is proposed for the
dynamic scheduling of a cloud DC that would serve a particular user application with
data from the respective VSs.

Combining the solutions of the afore-mentioned research challenges, a holistic pro-
totype of sensor-cloud infrastructure is developed using real sensor hardware and a real
cloud platform. To validate the correctness of the infrastructure, an application-specific
scenario of multiple target tracking is investigated and experimented within it. An exper-
iment is also performed using the real (non-simulated) setup to examine the performance
of the prototyped sensor-cloud infrastructure in big-data environments. It is observed
that the infrastructure performs significantly well in practical scenarios involving real
sensor-hardware, huge and voluminous data requests, and large number of end-users.

Keywords: Cloud computing, wireless sensor networks, big data, data centers,
energy constraints, pricing, virtualization

xii

Contents

Approval i

Certificate iii

Declaration v

Dedication vii

Acknowledgment ix

Abstract xi

Contents xiii

List of Figures xvii

List of Tables xix

List of Abbreviations xxi

1 Introduction 1
1.1 Background . 4

1.1.1 Actors of Sensor-cloud . 4
1.1.2 Architecture of Sensor-cloud . 5
1.1.3 Views of Sensor-cloud . 6

1.2 Scope and Objectives . 10
1.3 Contribution of the Dissertation . 13
1.4 Organization of the Dissertation . 14

xiii

Contents

2 Literature Survey 19
2.1 Evolution of Sensor-cloud . 19
2.2 Pricing in Sensor-cloud . 22
2.3 Networking in Sensor-cloud . 24
2.4 Implementation Models of Sensor-cloud 26
2.5 Summary . 28

3 Theoretical Characterization of Virtualization and Experimental Jus-
tification for a Paradigm Shift 29
3.1 Characterization of Virtualization . 30
3.2 Experimental Justification for Paradigm Shift 36

3.2.1 Performance Metrics . 36
3.2.2 Explanation of Parameters . 39
3.2.3 Approach Taken . 39
3.2.4 Performance Analysis . 40

3.3 Summary . 44

4 Dynamic and Adaptive Data Caching Within Sensor-cloud 47
4.1 Contributions of the Chapter . 49
4.2 Proposed Architecture for Caching . 49

4.2.1 Rationale behind Two Cache Units 50
4.3 Model of the External Cache . 50
4.4 Model of the Internal Cache . 54
4.5 Theoretical Analysis . 56
4.6 Performance Evaluation . 57

4.6.1 Explanation of Parameters . 58
4.6.2 Approach Taken . 58
4.6.3 Performance Analysis . 60

4.7 Summary . 63

5 Dynamic and Optimal Pricing Scheme for Se-aaS 65
5.1 Contributions of the Chapter . 66
5.2 Problem Scenario . 67
5.3 System Model . 68

5.3.1 Assumptions of the Model . 69
5.3.2 pH: Pricing attributed to Hardware 70
5.3.3 pI: Pricing attributed to Infrastructure 77

xiv

Contents

5.4 Experimental Results . 84
5.4.1 Explanation of Parameters . 84
5.4.2 Analysis of pH . 85
5.4.3 Analysis of pI . 92

5.5 Summary . 96

6 Optimal Data Center Scheduling for QoS Management in Sensor-cloud 99
6.1 Contributions of the Chapter . 100
6.2 Problem Description . 101
6.3 Formal Definition of the Problem . 103
6.4 System Model . 107

6.4.1 Optimal Decision Rule . 107
6.4.2 Proposed Model . 108

6.5 Analytical Results . 118
6.6 Performance Evaluation . 121

6.6.1 Explanation of Parameters . 122
6.6.2 Single Application Scenario . 122
6.6.3 Multiple Application Scenario . 126
6.6.4 Complexity Analysis . 129

6.7 Summary . 130

7 Development of a Working Prototype of Sensor-cloud Infrastructure 133
7.1 Limitations of Sensor-cloud . 133
7.2 Contributions of this Chapter . 134
7.3 Design of Big-Sensor-Cloud Infrastructure 135
7.4 Architecture of Big-Sensor-Cloud Infrastructure 137
7.5 Implementation of Big-Sensor-Cloud Infrastructure 139
7.6 Performance Evaluation . 144

7.6.1 Explanation of Parameters . 145
7.6.2 Bottleneck Analysis of Existing Sensor-cloud 145
7.6.3 Performance Analysis of BSCI . 149

7.7 Summary . 152

8 Application Specific Analysis of Sensor-cloud Infrastructure: Target
Tracking 155
8.1 Contribution of the Chapter . 156
8.2 S-DMA: Social choice based Dynamic Mapping Algorithm 157

xv

Contents

8.2.1 Detection of Overlapping Coverage 157
8.2.2 Calculation of ‘Eligibility’ Factor of a Sensor Node 158
8.2.3 Computation of Nodal Preference 158
8.2.4 Social Choice Aggregation . 160

8.3 Analytical Results . 162
8.4 Conclusion . 166

9 Summary and Conclusion 167
9.1 Summary of the dissertation . 167
9.2 Contribution of Our Work . 169
9.3 Future Scope of Work . 171

References 173

Publications 189

xvi

List of Figures

1.1 Architecture of sensor-cloud . 6
1.2 User-organization’s view of sensor-cloud 7
1.3 Real view of complex processing within sensor-cloud 9

3.1 Comparative performance analysis of sensor-cloud and WSN 41
3.2 Comparative cost-effectiveness analysis of sensor-cloud and WSN 42
3.3 Profit analysis of CSP in a sensor-cloud 44

4.1 Existing and proposed architectures of caching in sensor-cloud 48
4.2 Analysis of rate of change of physical environment with time 51
4.3 Study of the expectation of the sensed data with time 59
4.4 Analysis of the RMSE in computation of the expectation of sensed data . 60
4.5 Overall analysis of the network resources 61
4.6 Analysis of adaptiveness and dynamism of caching 62

5.1 Network architecture of sensor-cloud . 67
5.2 Analysis of price-demand relationship . 80
5.3 Comparative study of performance in terms of network parameters 88
5.4 Analysis of price charged (due to hardware) with time 90
5.5 Analysis of the tendency of the charged price to converge with the user

utility . 91
5.6 Analysis of demand and user satisfaction 92
5.7 Overall analysis of the profit made by the CSP 93
5.8 Analysis of the correlation of price, demand, and user satisfaction 93
5.9 Analysis of scalability of the system . 94
5.10 Overall analysis of the profit made by the CSP 96

6.1 Different storage types in DCs . 100

xvii

List of Figures

6.2 Diagrammatic representation of the problem scenario 102
6.3 Network model of the problem scenario 104
6.4 Performance evaluation of the set of decision rules (F) 124
6.5 Analysis of the decision making abilities of the set of the temporary DCs

(DAppi) . 125
6.6 Analysis of the “goodness” and “badness” of the nominated data centers . 125
6.7 Performance evaluation for multiple applications 127
6.8 Complexity analysis by varying system components 130

7.1 Use case diagram for Big-Sensor-Cloud Infrastructure 135
7.2 Entity Relationship Diagram for Big-Sensor-Cloud Infrastructure 137
7.3 Architecture of Big-Sensor-Cloud Infrastructure 138
7.4 Block diagram of layer 1 . 141
7.5 Block diagram of layer 2 . 142
7.6 Block diagram of layer 3 . 143
7.7 Block diagram of layer 4 . 144
7.8 Comparative analysis of performance in sensor-cloud and big-sensor-cloud

platforms . 146
7.9 Comparative analysis of sustainability . 147
7.10 Cumulative cash flow analysis for the various actors of BSCI 150
7.11 Analysis of DML query execution time . 151
7.12 Analysis of DDL query execution time . 153
7.13 Analysis of retrieval query execution time 154

8.1 Local cluster formation . 157
8.2 Projection of S-DMA against HMTT . 164
8.3 Comparison of energy consumption . 164
8.4 Values related to the preference profile . 165

xviii

List of Tables

3.1 Illustration of a runtime scenario within sensor-cloud 36
3.2 Experimental setup . 37

4.1 Experimental setup . 58

5.1 Testbed information for pH and pI . 84
5.2 Experimentation setup for pH . 85
5.3 Comparative study of pH with PPM and Sprite 87
5.4 Experimentation setup for pI . 92

6.1 Table of notation . 103
6.2 Testbed information . 121
6.3 Experimental setup for single application 123
6.4 Parameters of the set of nominated DCs (Dnom) 123
6.5 Experimental setup for multiple applications 126

7.1 Implementation details of Big-Sensor-Cloud Infrastructure 140
7.2 Experimental setup . 145

xix

List of Abbreviations

BS Base Station

BSCI Big-Sensor-Cloud Infrastructure

BSCSP Big-Sensor-Cloud Service Provider

CCCI Client-side Client-Cloud Interface

CCF Coverage Contraction Factor

CCS Credit Clearance Service

CSP Cloud Service Provider

DC Data Center

DCL Data Control Language

DDL Data Definition Language

DML Data Manipulation Language

DQS-Cloud Data Quality-Aware Sensor Cloud

DSR Dynamic Source Routing

DWDM Dense Wavelength Division Multiplexing

EC External Cache

HDFS Hadoop Distributed File System

HMDP Hierarchical Markov Decision Process

HMTT Hierarchical Markov Decision Process for Target Tracking

IaaS Infrastructure-as-a-Service

IC Internal Cache

xxi

List of Symbols and Abbreviations

IIA Independence of Irrelevant Alternatives

RMSE Root Mean Square Error

NSNR Nodal Signal to Noise Ratio

OpenFS Open Field Server

OLS Open Line System

OSGi Open Service Gateway Initiative

pH pricing attribute due to Hardware

pI pricing attribute due to Infrastructure

P Pareto Axiom

PaaS Platform-as-a-Service

PPC Potential Pareto Criterion

PPM Packet Purse Model

PPSS Probability-based Prediction and Sleep Scheduling

QoI Quality of Information

QoS Quality of Service

RSS Received Signal Strength

SaaS Software-as-a-Service

Se-aaS Sensors-as-a-Service

S-DMA Social-choice based Dynamic Mapping Algorithm

SAF Social Aggregation Function

SCCI Server-side Client-Cloud Interface

SCF Social Choice Function

SOA Service Oriented Architecture

VM Virtual Machine

VS Virtual Sensor

VSG Virtual Sensor Group

UPnP Universal Plug and Play

xxii

List of Symbols and Abbreviations

WSN Wireless Sensor Network

xxiii

Chapter 1

Introduction

In the recent past, Wireless Sensor Networks (WSNs) have emerged at a very fast

pace and have been an integral part of enumerable real-life applications such as target-

tracking [1], battlefield monitoring [2, 3], telemonitoring [4], ubiquitous health monitor-

ing [5], and several other applications [6,7]. WSNs are built of several individual sensor

units coupled with multiple communicator units, together functioning as sensor nodes.

The individual sensor nodes are equipped with sensing hardware, but are essentially

resource-constrained devices with low power and limited computational abilities. The

end-user organizations of the WSNs are required to own and purchase the individual

sensor nodes, and deploy the same over a terrain of their interest. Subsequently, these

nodes communicate among one another to form the sensor network. The sensor nodes

of a particular WSN comprise of operating systems with monolithic kernel in which the

application remains compiled, and the nodes are specific to that particular application

only. Existing WSN-based applications are generally owned and used by commercial

organizations and these organizations are also responsible for the maintenance of the

sensor network over time. The WSN for a particular end-user organization is designed

to serve the interests of that organization only, and hence, the applications running

within the sensor nodes are programmed accordingly to meet the requirements of the

1

1. Introduction

organization.

Recent research has discovered multifold limitations [8, 9] of conventional WSNs,

which are summarized as follows:

• Existing WSNs are generally single-user centric and sensors of a particular WSN

are configured for a single application. Therefore, the renderability of customized

WSN applications is infeasible in traditional WSNs, unless the WSN is reconfigured

afresh, and the customized application is reloaded within the sensor-nodes.

• Existing WSN-based applications require the end user-organizations to own the

sensor nodes, deploy those over a region, and also be responsible for the main-

tenance of the same. The purchase, deployment, maintenance, and management

of WSNs are extremely expensive [10] and require the supervision of technical

personnel.

• Organizations which do not own sensor nodes are deprived of access to applica-

tions of the WSNs that are deployed in the field. Further, as mentioned above, it

is extremely expensive for the common mass of people and organizations to pur-

chase and deploy sensor networks on their own. This applies to any WSN specific

application, in general, and results in redundancy and unoptimized utilization of

sensor network resources [11].

• Because of monolithic kernels, it is infeasible to schedule and load multiple appli-

cations (of the same type) within a single sensor node. However, in some cases, a

two-stage bootloader is used to support switching between multiple applications.

But such operations involve manual intervention, and significantly high overhead

cost due to memory management, operating system independence, and complicated

process management [12,13].

Evidently, with the existing state-of-the-art (i.e., the traditional WSNs), the common

mass of people cannot enjoy the very emerging sensor technology without being directly

2

involved with the purchase, deployment, maintenance, and management of the sensor

nodes. The problem is intense and nontrivial, as most of the end-users are naive and

the overheads associated with a WSN are expensive.

Recent research [14,15] envisions sensor-cloud infrastructure as a potential substitute

for traditional WSNs. Sensor-cloud infrastructure is essentially an offshoot of conven-

tional cloud computing [16–18] that thrives on the principle of virtualization of physical

sensor nodes, thereby rendering a powerful infrastructure that interfaces between the

physical and cyber worlds. According to MicroStrain1, who stands among one of the

pioneers in inventing this technology, sensor-cloud infrastructure is defined as [14]:

A unique sensor data storage, visualization and remote management platform that

leverage powerful cloud computing technologies to provide excellent data scalability,

rapid visualization, and user programmable analysis.

Unlike the usual WSNs, sensor-cloud disseminates the usability of the physical sen-

sors to the common mass of end-users who do not have to own, maintain, or manage the

physical sensor nodes. In order to avail of the sensor-cloud infrastructure, the end-users

are required to possess their own WSN-based applications. These applications are fed

by the required sensed information, directly from the sensor-cloud service provider, on-

demand from the end-users. The underlying procedure of obtaining the raw sensed data

from the physical networks and the complex processing of those data are completely

abstracted from the end-users. The physical sensors are virtualized to form Virtual

Sensors (VSs) and data from the VSs are sent to the end-users. From the end-user

organization perspective, it appears that the organization is continuously being served

by a set of dedicated sensor nodes. However, in reality, a particular physical sensor node

serves multiple end-users and is dynamically allocated or deallocated to serve different

end-users. Thus, the virtualization of the physical sensor nodes enables the end-users to

1http://www.sensorcloud.com/system-overview

3

1. Introduction

envision the Sensors-as-a-Service, commonly known as Se-aaS. Se-aaS breaks the con-

ventional perception of the sensor nodes as typical hardwares and enables the end-users

to envision them simply as a service, just like water or electricity.

1.1 Background

In this Section, the background concepts and the architectural details of sensor-cloud

infrastructure are illustrated. The Section includes the various actors and their inter-

relationships, the different functional components of the infrastructure, and the work

flow of the platform.

1.1.1 Actors of Sensor-cloud

Sensor-cloud infrastructure comprises of three different actors [19]:

1. End-user: End-user is a person (or an organization) who (that) possesses his/her

(its) own applications, which are to be fed with sensor-data from the physical

sensor networks. As the type and amount of the demand changes with time,

the end-users enjoy scalability of Se-aaS, provided by the Cloud Service Provider

(CSP), i.e., the end-users are privileged to demand for different sensor services

at different time instants from heterogeneous sensor devices, and the services are

offered instantaneously by the CSP. In return, the end-users are liable to pay as

per their usage of Se-aaS to the CSP.

2. Sensor-owner: The sensor-owners are the business-actors in sensor-cloud infras-

tructure as they primarily impact the economics of the infrastructure. They pur-

chase physical sensor devices and lend these devices to the CSP. The sensor-owners

earn a monthly monitory profit as per the usage of their respective sensor devices.

3. Sensor-cloud administrator: The sensor-cloud administrator primarily man-

ages and controls the entire cloud processing activities involving virtualization of

4

1.1. Background

the physical sensor devices into distinct VSs, maintenance and monitoring of the

physical sensor devices, organization of the unstructured data, executing computa-

tionally intensive queries over the big data sets, and real-time service provisioning

of Se-aaS.

1.1.2 Architecture of Sensor-cloud

In this subsection, the internal architecture of sensor-cloud is presented. The funda-

mental difference between conventional WSNs and sensor-cloud platforms is that, unlike

WSNs, in sensor-cloud platforms the applications are decoupled from the physical sensor

nodes. The sensor-nodes are used only for sensing and performing local data aggregation

while the entire application-processing logic is handled within the cloud computing unit.

Sensor-cloud infrastructure essentially follows a three-tier architecture [19], as shown

in Figure 1.1. Tier 1 is the bottom-most layer of the infrastructure, which comprises of

physical sensor nodes that are heterogeneous in terms of their vendor, sensing hardware

and sensing capabilities, communication module and mechanism, and applications. The

data from Tier 1 are pulled by the cloud computing unit that comprise Tier 2. In Tier 2,

the entire sensor-cloud computation is performed, i.e., Tier 2 is the center for execution

of sensor allocation and deallocation, sensor grouping and virtualization, pulling sensor

data from Tier 1, aggregation of raw sensor data, and transmission of aggregated sensor

data to Tier 3. In Tier 3, lies multiple end-user organizations with their own applications.

Data from Tier 2 are fed to these applications running at Tier 3. Any modification in

the structure and design of the applications in Tier 3 does not call for any change in the

sensors of Tier 1, i.e., if an application in Tier 3 is re-designed or re-structured, it is not

necessary to reload or reconfigure the sensor nodes to serve the modified application.

5

1. Introduction

Figure 1.1: Architecture of sensor-cloud

1.1.3 Views of Sensor-cloud

This subsection presents the details of the architectural aspects of sensor-cloud from

two different points of view: (a) user-organization’s view or the logical view, and (b)

algorithmic view or the real view.

1.1.3.1 User-organization’s View (Logical View)

The logical view or the user-organization’s view of obtaining Se-aaS is the perspective of

how a sensor-cloud end-user envisions the infrastructure. Figure 1.2 depicts the logical

view of the architecture from the viewpoint of the end-user-organization. The commu-

nication interface of a user-organization is primarily a Web interface running at the site

6

1.1. Background

of the CSP. It is a Web portal through which the user-organization requests Se-aaS [19].

After the user-organization logs into the portal, the end-user is presented with some

specific templates that collect information relevant to the type of application such as the

type of sensor nodes that the user is expecting, and the region that the user is interested

in. The templates enable the end-user to specify his requirements of sensor data at a

very high level. The templates are then interpreted within the cloud to transform the

high level requirements in terms of allocation physical sensor nodes. The subsequent

details of this process are discussed in Subsection 1.1.3.2.

Having specified the relevant details, the user-organization is kept abstracted from

the underlying complex processing logic involved with the physical sensor node allo-

cation, application-specific aggregation, and virtualization. Following the consolidated

data processing within cloud, the user-organization receives the sensed information from

the cloud through the portal, which, in turn, is fed into the intended application(s).

Figure 1.2: User-organization’s view of sensor-cloud

1.1.3.2 Algorithmic View (Real View)

The real view of the architecture for the actual processing, which is required within the

sensor-cloud infrastructure, is discussed here. Figure 1.3 shows the diagrammatic rep-

resentation of the philosophy behind sensor node virtualization, which is the principal

component of the real view. Instructions obtained from the end-user organization are

7

1. Introduction

extracted from the templates. As sensor-cloud architecture deals with sensor nodes with

heterogeneous specifications, the sensor nodes are standardized using Sensor Modeling

Language (SensorML), defined by the Open Geospatial Consortium [19, 20]. To make

the processing flexible, manageable, and platform-independent, SensorML uses XML en-

coding while maintaining the sensor metadata [21]. The process of translating the high

level user-requirements, in terms of physical sensor allocation, is one of the major contri-

butions of this dissertation, and his discussed in detail in Chapter 3. Once the physical

sensors are allocated to serve a particular application, the data from all of these sensors

are virtualized to form the respective VSs. Different VSs serving a particular application

are further grouped to form Virtual Sensor Groups (VSGs). After the formation of the

VSs and VSGs, the data are pulled from the underlying physical sensor nodes in an

on-demand and application-specific manner. The data from the sensors comprising a

VS are meaningfully aggregated and dispatched to the respective end-user applications.

Every physical sensor node reports its sensed data to the sensor-cloud storage.

Within the cloud environment, the sensed data are efficiently aggregated in real-time.

These data from a consolidated group of sensor nodes are transmitted to the end-user-

organization. Thus, an end-user anticipates the source of the data to be dedicated for

his/her application, whereas, practically the set of source sensor nodes is chosen from

an infinite pool of resources and changes dynamically. Further, the single sensor node

may also serve multiple applications at a particular time instant and the composition of

VSs may change based on sensor allocation policies.

From Figures 1.1 and 1.2, the usefulness of sensor-cloud architecture is well perceived.

The end-users of sensor-cloud can be any naive person/organization possessing its own

WSN application(s). Unlike conventional WSNs, the end-users can obtain Se-aaS, just

as water or electricity, which can be obtained on-demand, in no time. Thus, sensor-cloud

brings in a revolutionary change by enabling the dissemination of WSN technology to

the common mass of people/organizations who do not really own WSNs.

8

1.1. Background

Figure 1.3: Real view of complex processing within sensor-cloud

As mentioned previously, by virtualization, sensor-cloud enables run time switching

of applications, and real-time data and resource provisioning, without the user being

aware of the complex processing logic. On the contrary, in a WSN, the nodes are

statically configured for a fixed set of applications. From the architectural aspects of

sensor-cloud infrastructure, it can be inferred that only the virtualization aspect of it

makes it so convenient, accessible, beneficial, and adaptable for public interests. The

pay-per-use policy within sensor-cloud also adds on to the benefits of the end-users by

diminishing the huge expenditure incurred for setup, maintenance, and management of

WSNs.

9

1. Introduction

1.2 Scope and Objectives

Sensor-cloud platforms are relatively recent, and are recognized as potential substitutes

of the traditional WSNs. Presently, very few research works exist on this technology,

and to the best of our knowledge, all of the existing research works focus primarily on

the dogma, the principles, and the conceptualization of sensor-cloud. However, research

work providing scientific and technological concreteness to the concept of sensor-cloud

infrastructure are scarce. From an implementation point of view, this dissertation iden-

tifies the scope of technical and theoretical research. Considering the above-mentioned

scopes of research in this domain, the primary scope and objectives of the dissertation

are outlined as follows:

(a) Theoretical characterization of virtualization and justification for a paradigm

shift from conventional WSNs: Initially, this dissertation focuses on the theo-

retical characterization of virtualization of physical sensor nodes – one of the first

attempts in this direction. Existing related research works on sensor-cloud have

primarily focused on the ideology and the challenges that WSN-based applications

typically encounter. However, none of the works has addressed theoretical charac-

terization and analysis, which can be used for building models for solving different

problems to be encountered in using sensor-cloud. This objective also experimentally

justifies the necessity for the shift of paradigm from traditional WSNs to sensor-cloud

platforms.

(b) Dynamic and adaptive data caching for virtualization within sensor-cloud:

Conventional data transmission techniques involve periodic packet transmissions to

the cloud-end. However, the rate of change of the physical environment may not

be reasonably significant, thereby, leading to redundant packet transmissions and

inefficient utilization of network resources. Hence, an optimal caching mechanism is

designed to be executed within sensor-cloud to obtain resource efficiency in terms

10

1.2. Scope and Objectives

of energy and network lifetime. The proposed data caching mechanism is dynamic,

and is adaptive to the change of the physical environment, and thereby, preserves

the accuracy of information, and conserving the network resources, simultaneously.

(c) Dynamic and optimal pricing scheme, specifically for Se-aaS: As sensor-

cloud infrastructure conceptually extends cloud computing, it complies with the

features that are intrinsic to the latter. A cloud computing platform generally con-

forms with a pay-per-use model, in which the end-users pay only for those units of

resources that are utilized. Within sensor-cloud technology, the end-users utilize the

physical sensors and the cloud infrastructure as per their demand and pay as per

their usage, to the CSP. Thus, it is necessary to develop a pricing scheme for Se-aaS

to quantify the usage of the end-users and charge them accordingly. This objective

focuses to design a dynamic and optimal pricing scheme, specifically for Se-aaS. The

proposed scheme considers issues that are inherent to the heterogeneity of services

of sensor-cloud infrastructure.

(d) Optimal data center scheduling for Quality of Service management in

sensor-cloud: The networking dimensions of sensor-cloud is also totally unexplored

to this date. Research scopes on sensor-cloud networking has also been identified due

to routing and channelization of the data of multiple VSs, originating from multiple

regions, to geographically distributed sensor-cloud data centers (DCs). Existing

research works have not considered these challenges, and uncertainties that might

come up while executing the traditional sensor-based applications using sensor-cloud.

Therefore, the objective is to design and propose an algorithm for the dynamic

scheduling of a cloud DC that would serve a particular user application with data

from the multiple VSs.

(e) Development of a prototype of sensor-cloud infrastructure using real sen-

11

1. Introduction

sor hardware and cloud platform: For the sake of establishing sensor-cloud

platforms for practical purposes, this dissertation also presents a real prototype im-

plementation of sensor-cloud infrastructure using real hardware. In the endeavor

of prototyping sensor-cloud, there were certain limitations in the conceptualization

of sensor-cloud that were investigated and became evident. With the vastness of

contemporary data, especially when multiple organizations tend to access the in-

frastructure simultaneously with heterogeneous demand for Se-aaS, sensor-cloud

encounters serious bottleneck as its processing mechanisms were traditional [19].

Further sensor-cloud infrastructure provisions sensor data for application-feed only,

i.e., it cannot execute customized analytics on huge data sets to obtain meaningful,

intelligent information. This objective of the dissertation addresses the aforesaid

limitations of sensor-cloud and proposes a new infrastructure – Big-Sensor-Cloud

Infrastructure (BSCI) – by including an innovative component within the infras-

tructure. A prototype of BSCI is constructed and comparatively tested with the

sensor-cloud platforms to investigate the difference in performance. It was observed

that BSCI is an enhanced and modified version of sensor-cloud platforms in terms

of performance of data (or query) processing, storage, and management.

(f) Application specific analysis of sensor-cloud infrastructure: Target track-

ing: After developing an enhanced version of sensor-cloud infrastructure, referred to

as BSCI, it is important to look into challenges, and uncertainties that might come up

while executing the traditional sensor-based applications within sensor-cloud plat-

forms. Such a scenario is investigated and simulated for executing a multiple target

tracking application within a sensor-cloud platform.

12

1.3. Contribution of the Dissertation

1.3 Contribution of the Dissertation

The proposed research focuses on building a holistic prototype of sensor-cloud infras-

tructure, rendering Se-aaS. The primary contributions of the dissertation are as follows:

• Theoretical characterization of sensor-cloud and justification for a paradigm shift

from conventional WSNs: Initially, the work focuses on the theoretical modeling

of virtualization of physical sensor nodes. The necessity for a paradigm shift for

all WSN-based applications to a sensor-cloud platform is experimentally justified.

The proposed work has suggested a framework for performance analysis of sensor-

cloud based on few chosen metrics such as fault-tolerance, lifetime of a sensor

node, and energy consumption, in contrast to that of a WSN. Finally, this work

endeavors to conceive the idea of using physical Se-aaS.

• Data caching policies with the infrastructure: An optimal caching mechanism

within sensor-cloud to obtain resource efficiency in terms of energy and network

lifetime. The proposed data caching mechanism is dynamic, and is adaptive to

the change of the physical environment. Thereby, it preserves the accuracy of

information and conserves the network resources, simultaneously.

• Designing of a dynamic and optimal pricing scheme, specifically for Se-aaS : As

a cloud computing platform generally conforms with a pay-per-use model, within

sensor-cloud platforms, the end-users utilize the physical sensors and the cloud

infrastructure as per their demand and pay as per their use, to the CSP. Thus, a

pricing scheme is developed for Se-aaS to quantify the use by the end-users and

charge them accordingly.

• Optimal DC scheduling and networking withing DCs for QoS management: The

work proposes a DC scheduling algorithm for routing and channelization of the

data of the VSs originating from multiple regions, to geographically distributed

13

1. Introduction

sensor-cloud data centers (DCs). The work also focuses to choose a single DC

serving a particular application by reducing the notwork overhead simultaneously.

• Functional prototype development for Se-aaS : This work deals with the develop-

ment of a prototype of sensor-cloud infrastructure using real sensor hardware and

cloud platform. The work identifies the limitations of the basic sensor-cloud in-

frastructure and proposes a modified infrastructure.

• Application specific analysis of sensor-cloud infrastructure: This work considers

the challenges and uncertainties that might arise while executing the traditional

sensor-based applications using sensor-cloud. The problem is investigated in a

multiple target tracking application scenario, using the sensor-cloud platform.

1.4 Organization of the Dissertation

The rest of the Chapters in this dissertation are organized as follows:

Chapter 2: Literature Survey

In this Chapter, a thorough survey of the literature on sensor-cloud is presented. The

Chapter is divided into four distinct subsections. Initially, the evolution of sensor-cloud

is elaborated and studied. Followed by this, the literature survey on pricing aspects of

sensor-cloud is presented. Subsequently, the prior work done on the networking issues of

sensor-cloud are discussed. Lastly, the different implementation models of sensor-cloud

are presented and discussed.

Chapter 3: Theoretical Characterization of Virtualization and Experi-

mental Justification for a Paradigm Shift

This Chapter of the dissertation focuses on the theoretical characterization of virtual-

ization of physical sensor nodes is performed. The necessity for a paradigm shift for

14

1.4. Organization of the Dissertation

all WSN-based applications to a sensor-cloud platform is experimentally justified. The

proposed work suggests a framework for performance analysis of sensor-cloud, based on

few chosen metrics such as fault-tolerance, lifetime of a sensor node, and energy con-

sumption, in contrast to that of a WSN. Finally, it endeavors to establish the idea of

using physical Se-aaS.

Chapter 4: Dynamic and Adaptive Data Caching Mechanism Within

Sensor-cloud

This Chapter introduces both internal and external caching techniques to ensure effi-

ciency in resource utilization of the underlying physical network. The proposed data

caching mechanism is dynamic, optimal, and is adaptive to the change of the physical

environment, and thereby, preserves the accuracy of information, and conserving the

network resources, simultaneously.

Chapter 5: Dynamic and Optimal Pricing Scheme for Se-aaS

In this Chapter, a dynamic and optimal pricing scheme is proposed for provisioning

Se-aaS comprising of two components – pricing attributed to Hardware (pH) and pricing

attributed to Infrastructure (pI). pH addresses the problem of pricing the physical sensor

nodes subject to variable demand and utility of the end-users. It maximizes the profit

incurred by every sensor owner, while keeping in mind the end-users’ utility. pI mainly

focuses on the pricing incurred due to the virtualization of resources. It takes into

account the cost for the usage of the infrastructural resources, inclusive of the cost for

maintaining virtualization within sensor-cloud. pI maximizes the profit of the sensor-

cloud service provider by considering the user satisfaction.

Chapter 6: Optimal Data Center Scheduling for QoS Management in

Sensor-cloud

15

1. Introduction

This Chapter focuses on the problem of scheduling a particular DC that congregates data

from various VSs, and transmits the same to the end-user application. The work follows

the general pairwise choice framework of the Optimal Decision Rule. The scheduling

of the DC is performed under several network constraints, such as data migration cost,

data delivery cost, and service delay of an application that ensures the preservation of

the QoS and maintenance of the user satisfaction. The work quantifies the effective QoS

of Se-aaS and determines an optimal decision rule for electing a particular DC. While

arriving at a collective decision, the work incorporates the fallible decision making ability

of a DC, thereby, excluding the loss of generality.

Chapter 7: Development of a Working Prototype of Sensor-cloud In-

frastructure

This Chapter addresses the aforesaid limitations of sensor-cloud and proposes a new in-

frastructure – Big-Sensor-Cloud Infrastructure (BSCI) by including an innovative com-

ponent within the infrastructure. As BSCI is cloud-based, it ensures the features of

scalability, pay-per usage, and implementation of user programmable logic. The archi-

tecture allows the common people to envision Se-aaS. This Chapter presents the details

of the limitation of sensor-cloud and illustrates the modified architecture for BSCI. Ev-

ery functional module of BSCI is described and the development details of each of these

modules are thoroughly presented. A comparative study is also performed to examine

the improvement of BSCI over sensor-cloud in terms of performance in querying and

data processing.

Chapter 8: Application Specific Analysis of Sensor-cloud Infrastructure:

Target Tracking

In this Chapter, an application specific analysis is performed within sensor-cloud envi-

16

1.4. Organization of the Dissertation

ronment. As sensor-cloud end-users may be multiple organizations, the traditional target

tracking application encounters typical difficulty. As targets enter the coverage zone of

multiple sensors, it becomes crucial to schedule sensors and generate distinct clusters of

sensors for each target as different targets might be of interest to different organizations.

It becomes challenging to correctly map sensors to targets, in the presence of overlap-

ping coverage, to maintain their privacy and correctness of sensed information about

the targets. To resolve this issue, the Social-choice based Dynamic Mapping Algorithm

(S-DMA) is proposed, based on the Theory of Social Choice, for ensuring a ‘fair’ and

unbiased mapping of sensors to targets. The details of this work are discussed in the

corresponding chapter.

Chapter 9: Summary and Conclusion

This Chapter concludes the dissertation and highlights the key findings from the entire

dissertation. The Chapter also discusses the future scopes of work and illustrates the

future directions that may induce research interest.

17

Chapter 2

Literature Survey

In this Chapter, a survey of literature, related to the contributions made in this disser-

tation, is reported. Initially, the prior work on sensor-cloud are thoroughly discussed

and analyzed. Followed by this, the literature survey is divided into four distinct Sec-

tions which are the major focused areas of the dissertation. Thus, in Section 2.1, the

details on the evolution of sensor-cloud is presented followed by a thorough discussion

on the current state-of-the art research towards realization of sensor-cloud. Section 2.2

presents the survey of work in network and cloud pricing models and their implications

on sensor-cloud infrastructure. In Section 2.3, the work done on the networking aspects

of sensor-cloud are thoroughly investigated. Section 2.4 discusses thoroughly all the

real-life implementation models of sensor-cloud. Finally, Section 2.5 summarizes and

concludes the Chapter.

2.1 Evolution of Sensor-cloud

Before the concept of sensor-cloud was actually proposed, many works explored the real-

time communication aspects of cloud computing [22,23]. Some works [24,25] focused on

the integration of sensors to a cloud framework. Misra et al. [26] studied the problem

of integration of sensors with cloud from a perspective of health monitoring. The work

19

2. Literature Survey

focuses on an optimal selection of gateway in order to obtain the maximum bandwidth

required for health data transmission. The proposed idea was to transmit health data to

a cloud platform in an atomic manner. In another work, Zhu et al. [27] focused on the

reliability issues while integrating sensor networks to mobile cloud platforms. The work

addresses two problems – time and priority-based data transmission and priority-based

sleep scheduling for energy efficiency of sensor networks. Both the problems focus to

improve the issues for integration WSNs to cloud platform. However, the dissertation not

only focuses on the integration of sensor networks to cloud computing platforms, but also

contributes by formally modeling the virtualization of sensors within the sensor-cloud

environment.

Some of the fundamental issues were also addressed by Eugster et al. [28]. They

proposed a publish/subscribe model that demonstrates the interaction between a pub-

lisher and subscriber based on notification of an event. This work is considered to

form the basis of integrating sensor nodes in a cloud environment, as it focuses on data

transfer between dissimilar entities of a system. Hassan et al. [29] discussed the chal-

lenges normally encountered while integrating WSN with cloud. The work proposed

a sensor-cloud framework focusing mainly on Software-as-a-Service (SaaS) applications.

The work also proposed Statistical Group Index Matching (SGIM) scheme, which can be

used to transfer data to cloud applications, and the authors evaluate the work to exem-

plify its remarkable performance, compared to the existing algorithms. A similar effort

has been put by Eggert et al. in [30]. The work highlighted the challenges faced due to

the difficulty in understanding the diverse nature, implementation of the varied and scal-

able functionalities, and ensuring privacy in sensor-cloud. Additionally, the work drew a

baseline for addressing the aforesaid issues. In another work, Kumar et al. [31] devised a

mechanism for transferring large volume of sensed data from the local memory of sensor

nodes to cloud storage. The authors proposed the idea of transferring the responsibility

of data processing to the cloud gateways, thereby achieving high energy efficiency. The

20

2.1. Evolution of Sensor-cloud

authors exercised the algorithm for back propagation networks within the cloud-gateways

to execute data filtration. Using neural networks, the authors showed that they were

able to achieve efficiency in bandwidth consumption as well. It is observed that most of

the existing works primarily enlisted and discussed the possibilities of sensor-cloud and

the challenges involved with the same. However, this dissertation focuses on complete

characterization of sensor-cloud form an implementation perspective.

Alamri et al. [32] presented a thorough survey on sensor-cloud, its definition, the

intrinsic concepts, and the benefits of using it. The paper also presented a comparison

of the type of message flows for different algorithmic approaches. Eventually, the au-

thors also briefed the possible technical challenges in this aspect. Another work, which

proved to be highly advantageous and constructive towards sensor-cloud research, was

by Yuriyama and Kushida in [19]. This work clearly carved out the constructive and

opportunistic aspects of sensor-cloud architecture to a great extent. Few works also fo-

cused on virtualization in sensor networks. Olariu et al. [33] contributed in this domain

by proposing a very simple and general-purpose virtual infrastructure for WSNs. It is a

protocol independent work that can be used by the existing routing or data aggregation

protocols. Ojha et al. [34] dealt with topology virtualization by self-organization of nodes

in underwater sensor networks. Few works focused on designing an application-specific

framework and the data transmission methodologies [35–37]. Thus, the above works

focused more on the designing aspects, whereas the dissertation concentrates on con-

struction a fully-functional prototype of sensor-cloud infrastructure. For this purpose,

all the technical research issues are delved into and studied.

Evidently, despite the upsurge in research on sensor-cloud, there lacks mathematically-

based theoretical works that can help in supporting performance evaluation and analysis

of sensor-cloud based systems. Thus, Chapter 3 of the dissertation provides a detailed

formalization of the mathematical model behind virtualization – a key enabler of the

sensor-cloud technology. Chapter 3 also justifies the necessity for a shift of technology,

21

2. Literature Survey

from the conventional WSNs to sensor-cloud platforms, in the near future.

Out of the very few works that addressed the technical aspects of sensor-cloud,

Nguyen, and Huh [38] focused on the security of data transmission in a sensor-cloud en-

vironment. Chandra et al. [39] addressed the benefits of using Ethernet enabled Arduino

micro-controller for data communication at the sensor-cloud end. Bhunia et al. [40] ad-

dressed the problem of data acquisition from the underlying physical sensor nodes by

fuzzification of the data. In all of the above works, the process of data transmission from

the underlying physical networks to the cloud was considered to be periodic, and continu-

ous. However, as mentioned in Section 1.2, the rate of change of environment is random,

and inconsistent. Therefore, the goal of Chapter 4 is to achieve a double-caching mecha-

nism, which is dynamic and adaptive to the change in the physical environment, thereby

providing an efficient utilization of network resources, and simultaneously maintaining

the accuracy of the provisioned data.

2.2 Pricing in Sensor-cloud

Some prior works exist on network pricing [41–44]. Ng and Seah [45] applied game the-

ory for analyzing the truthful cooperation of physical nodes in a sensor network. The

work considered the behavior of colluding nodes involved in data delivery and message ac-

knowledgment in a lossy, multihop wireless network. Buttyan and Hubaux [46] proposed

a secured pricing technique, which encourages the physical node to cooperate in message

delivery and prevents from network overloading. In fact, some of the works [41, 42, 44]

also focused on the energy-efficiency aspects in which the authors envisioned the prob-

lem of maintaining resource efficiency as a functional objective of pricing. However, such

pricing schemes considered only the network attributes to be shared among the sensor

nodes. In Chapter 5 of the dissertation, the goal is not to distribute the network pa-

rameters, but to provision Se-aaS through routing and forwarding of data packets. In

the process of involving intermediate sensor nodes, the aim is to optimize the energy

22

2.2. Pricing in Sensor-cloud

efficiency and maintain the user-satisfaction, simultaneously.

On cloud pricing, specifically, several schemes were proposed for utilizing various

cloud computing resources [47]. In a recent article, Kash and Key [48] discussed the

open issues in cloud pricing and the futuristic evolution of pricing algorithms. Arevalos

et al. [49] studied the famous the Spot Price Prediction (SPP) and presented a com-

parative analysis with other predictive algorithms in terms of three different metrics –

mean-squared error, maximum positive error, and mean positive error. Li and Li [50]

proposed a hierarchical pricing model, which considers the issues related to Quality of

Service (QoS) and the utility of both users and service providers, thereby, enforcing a fair

approach for both the parties. The authors of [51–53] proposed dynamic pricing schemes

by adopting a revenue management framework from economics. The works suggest a

pricing model in which the provider makes a profitable margin without affecting the

customers’ demands in the near future. The major challenge of this work is to predict

how the demands of the users change with the change in the price, based on which the

dynamic pricing model is suggested. Sharma et al. [54] proposed a pricing model that

mainly focuses on two constraints: (a) the QoS to provide greater service satisfaction

from the user perspective and (b) profitability aspects from the cloud service provide

perspective. Son and Sim [55] studied both the pricing and time-slot negotiation for the

various usages of cloud services. In another work, Nasiriani et al. [56] proposed simple

ways of distribution of cloud’s costs to its different tenants. The performance of the

system is evaluated using commercial DCs of IBM and by using non-cooperative game

theory. Dabbagh et al. [57] addressed the problem of maximizing cloud profits while hav-

ing elasticity of resources. The work was tested on Google data traces. Similar to this

work, Chi et al. [58] also focused on price calculation for resource allocation algorithms

based on revenue redistribution. However, both of the works find their applicability on

in Paas or Iaas environments.

Few works focused on dynamic resource pricing within a pre-specified time-limit and

23

2. Literature Survey

fixed resource budget ensuring QoS [59–62]. Qin et al. [63] proposed a dynamic pricing

model, which is flexible to the change in the demand of the end-users and accordingly,

it adjusts the pricing of the cloud resources. Jangjaimon and Tzeng [64] implemented

an ‘enhanced adaptive incremental checkpointing’ (EAIC) meant to significantly reduce

the effective monetary cost involved in the expected turnaround time of an end-user

application. Kantere et al. [65] designed a pricing scheme for the data cache of the

cloud infrastructure. Few works [66, 67] have focused on price-based load balancing

or resource sharing. Greenwell et al. [68] worked on Pricing Intelligence as a service

(PINaaS) and carried out a case study of Amazon EC2 pricing to examine the dynamism

and intelligence of pricing policies. Another interesting work presented by Gohad et

al. [69] discussed how the pricing model can be designed for small or medium sized CSPs.

However, for all of the afore-mentioned works, the pricing does not involve charging

separate hardwares, such as physical sensors, and hence does not find their applicability

for Se-aaS. All of the above are designed only for a specific service. As Se-aaS is built

on a heterogeneous SOA, serving both infrastructure and hardware, Chapter 5 discusses

the design and implementation of a dynamic and optimal pricing scheme for Se-aaS. The

proposed scheme considers issues that are inherent to the heterogeneity of services of

sensor-cloud infrastructure.

2.3 Networking in Sensor-cloud

Number of works explored, and addressed the technical issues of cloud networking

[70–73]. Yuchi and Shetty [74] focused on teh diversity of cloud networks and intro-

duced the hierarchical network resource graph for modeling of cloud networks. A tabu

search algorithm is proposed for optimal positioning of the cloud DCs [75]. The work

also focuses on efficient routing of information while taking the link capacities into ac-

count. The credibility of the work is also strengthened by the case study of a Web search

engine. Mastroianni et al. [76] addressed the problem of managing power consumption of

24

2.3. Networking in Sensor-cloud

DCs. The work propounds ecoCloud for the consolidation of VMs within DCs. Another

work [77] also addressed the problem of consolidations of VMs under QoS constraints.

In [78], Bruneo examined the performance of the cloud DCs for Infrastructure-as-a-

Service platforms of cloud computing. The work proposes an analytical model for eval-

uating several performance metrics such as utilization, availability, waiting time, and

responsiveness. Various other works explored the issues of traffic management in cloud

systems [79,80]. For mobile cloud systems, research has found the directions in coopera-

tive resource management [47], energy-efficient offloading policies [81], and inter domain

resource allocation [82]. However, for all of the above works, the data are transmitted

from the DCs directly to the client. None of the work concerns intra-DC scheduling that

is essential primarily for sensor-cloud infrastructure as it involves collection of data from

various geographical locations to a single DC. Additionally, the flow of request in the

aforementioned cases is downward, from the client to the cloud [83–85], whereas, in our

case, the flow of data is bottom-up, from the physical networks to cloud.

Some works have differently worked on cloud networking by exploring some inter-

esting issues of cloud networking. Massonet et al. [86] discussed the issue related to

the security in federated cloud networks. The work proposed local and global security

policies on different units of federation and the authors evaluated the work by inspec-

tion of a deep packet. Filer et al. [87] thoroughly examined the network infrastructure

of Microsoft’s cloud platform to analyze the effects of elasticity and flexibility of cloud

networks. The authors assembled an Open Line System (OLS) using Dense Wavelength

Division Multiplexing (DWDM) signals, Ethernet switches and a controller of the soft-

ware defined networks. Jiao et al. [88] addressed the problem of dynamic allocation of

cloud network resources that is highly difficult due to the highly varying demands, the

reconfiguration cost, and the variety of resources. The authors address these challenges

and evaluate the performance of the proposed approach on real-world cloud environ-

ments. Demydov et al. [89] proposed an intriguing issue of firewall migration within

25

2. Literature Survey

cloud networks. The authors utilized it as an intermediate cloud platform that have a

high-defense mechanism to stand heavy threats and security attacks. Murugesan and

Bojanova [90] authored a book on cloud networks where the authors discussed about

the various network and I/O virtualization techniques and the different possibilities and

results. However, it is to be noted that none of the works focused on the network issues

involving cloud DCs. The dissertation addresses the problem of migration of geograph-

ically distributed data from VSs to different DCs of sensor-cloud.

Chapter 6 of the dissertation propounds scheduling of a single DC for serving a

particular application. The scheduled DC collects information from several temporary

DCs, which are used in intermediate storage and logging of data from the physical sensors

directly to the cloud. The scheduler process is designed under constraints to ensure user

satisfaction and maintenance of QoS, simultaneously.

2.4 Implementation Models of Sensor-cloud

Several sensor-cloud frameworks and models have been implemented till date [91]. For

example, in the work of Chandra et al. [92], the authors addressed the problem of

establishing a connection with a cloud server and Ethernet enabled Arduino micro-

controller based sensors. In this work, three different cloud services – ThingSpeak,

Nimbits, and Open.Sen.se are explored for integration of sensors. Sen et al. [93] proposed

a real-life implementation sensor-cloud architecture that encourages end-users to use

their own sensor-based applications. The architecture is associated with the two different

phases – “coverage” in which the optimal set of sensors is determined to locate a target

and the second phase is “connectivity” to establish communication connectivity among

all the selected sensors. However, this work just considers the collection and dumping

of sensor data for real-life applications. Sen and Madria [94], in another work, focused

on the risk-assessment aspects of sensor-cloud platforms. The authors proposed a risk-

assessment framework to assess the impacts and implications of the potential risks of

26

2.4. Implementation Models of Sensor-cloud

such platforms and analyzed the likelihood of such risks. The work aims to aid the

security administrator to accordingly design and characterize security parameters for

sensor-cloud platforms. From a security perspective, Saha [95] focused on the intrinsics

of secured data processing within a WSN. Although the author targets sensor-cloud

integration, the work is primarily based on in-network management and processing of

sensor data from various applications. All of the above works focus on proposing new

concepts and architecture for real-life sensor-cloud applications. However, eventually,

none of the works constructed a functional model or prototype of a sensor-cloud system.

From a development perspective, Kedia [96] developed a project on water-quality

monitoring with the help of a sensor-actuator system. The project comprises of de-

ployment of HydroQual, HydroQual-A, and Hydro-Depth sensors for monitoring basic

water level, pressure of water, and depth of eater, respectively. Similar to the previous

work, Neto et al. [97] proposed the SmartComponent Framework using technologies viz.

Open Service Gateway Initiative (OSGi) Apache Felix Framework, Universal Plug and

Play (UPnP) Basedriver, and iPOJO and the framework collects and processes sensor

data. However, both the works assume that the subsequent integration of these sen-

sors to a cloud set-up is trivial and do not mention much on the integration issues of

the sensors to a cloud server. Hirafuji et al. [98] built an OpenFS (Open Field Server)

hardware. The developed open-source hardware is was designed for high-performance

sensor-networks and the authors employed Twitter-cloud within the hardware to share

the obtained data. In another work [99], Srimathi et al. proposed an underwater sensor

cloud model using Hadoop framework as a middleware for the purpose of data aggre-

gation and management. The model provides real-time underwater status but does not

utilize the big data management capabilities of Hadoop. Kothari et al. [100] focused on

an Internet of Things (IoT) perspective. The authors proposed a Data Quality-Aware

Sensor Cloud (DQS-Cloud) for pervasive data management, intelligent computing, and

sensor stream management. However, none of the afore-mentioned cloud-based works

27

2. Literature Survey

consider sensor virtualization aspects. Further, although Kothari et al. considered the

IoT aspect, the work precisely does not consider the high volume, velocity, and variety of

contemporary data. Therefore, Chapter 7 of the dissertation focuses to build a hoilstic

prototype of sensor-cloud considering the above aspects.

2.5 Summary

Combining the limitations of the existing state-of-the-art for sensor-cloud infrastructure

as discussed above, this dissertation focuses to address the afore-mentioned limitations

in the subsequent Chapters. Eventually, the dissertation focuses to build a holistic pro-

totype of a modified form of sensor-cloud infrastructure – the Big-Sensor-Cloud Infras-

tructure (BSCI). Followed by this, the prototype is validated by mounting a WSN-based

multi-target tracking application. The proper execution of the application in the new

paradigm is also examined.

The subsequent Chapter presents the theoretical characterization of virtualization

within sensor-cloud and further presents and experimental evaluation to justify the

paradigm shift from traditional WSNs.

28

Chapter 3

Theoretical Characterization of

Virtualization and Experimental

Justification for a Paradigm Shift

The previous Chapter presents a thorough review of the prior literature on sensor-cloud.

Evidently, despite the upsurge in research on sensor-cloud, there lacks mathematically-

based theoretical works that can help in supporting performance evaluation and analysis

of sensor-cloud based systems. This Chapter proposes a detailed formalization of the

mathematical model behind virtualization, a key enabler of the sensor-cloud technology.

Motivated by the work of Dong et al. [101] that proposes an idea for a high-level model

for virtualization, the main focus, in this specific work, is to characterize virtualization

of sensor nodes and experimentally justify the necessity for a shift of technology from

the conventional WSNs to a sensor-cloud platform in the near future.

In this Chapter, a detailed formalization of the mathematical model behind vir-

tualization, a key enabler of the sensor-cloud technology, is presented, followed by an

experimental justification for the paradigm shift from conventional sensor networks to

sensor-cloud. The two afore-mentioned topics are covered in separate Sections.

29

3. Theoretical Characterization of Virtualization and Experimental
Justification for a Paradigm Shift

3.1 Characterization of Virtualization

Prior to mathematically formulating the virtualization model, this work defines the

entities and the sub-entities, which play active roles in the process of virtualization.

Definition 1. The type of a physical sensor node, along with its specification, Ti, is

interpreted to be an element from the set T = {T1, T2, ..., Tα}, where α is the number of

distinctly registered sensor types.

For example, T1 may represent a ADXL345 3-Axis 3g accelerometer, whereas T2

may be the type indicator of a Laser Doppler Vibrometer. It is to be noted here that,

multiple types of a particular sensor type can be allocated to an end-user. For example,

an end-user may be allocated 10 rainfall measuring sensors across different geographical

locations of a country and the values obtained can be averaged to get the overall rainfall

metric for the country.

Definition 2. Every sensor owner is denoted by Oi, such that, Oi ∈ O = {O1, O2, ..., Oβ},

where β is the total number of sensor owners who contribute towards the sensor-cloud

architecture.

A sensor owner can voluntarily register into or deregister from the sensor-cloud.

Definition 3. The location of a physical sensor node is denoted by a 2-tuple Loc =<

l1, l2 >, where l1 and l2 represent the latitude and longitude of the position of the sensor

node, correctly, upto a negotiated precision value.

The location of a physical sensor node is stored within the cloud storage at the time

of its registration, following its deployment. It is to be mentioned here that, the sensors

can be deployed indoor or outdoor.

Definition 4. The state of a sensor is denoted by a Boolean variable st = {1, 0},

to indicate whether the sensor is active (serving any user-organization), or inactive,

respectively.

30

3.1. Characterization of Virtualization

A sensor will be allocated to serve an end-user either if it active (in that case, we can

reuse the sensed data for multiple organizations) or, if it can be made active by external

signalling [102].

Although the CSP is generally visualized as a centralized authority for provisioning

cloud services, the realistic scenario involves a role-specific or region-specific distribution

of service providers under a common roof. Thus, distributed cloud service providers are

expressed as, CSP = {CSP 1, CSP 2, ..., CSP γ}, where a total of γ number of cloud

service providers are authorized. The QoS of a physical sensor node is also a significant

component to identify it. It is a composite tuple that is computed including several

sensor node parameters such as sensing range, transmission range, energy status, and

sensing accuracy [103]. The set of currently running applications, the set of physical

sensor nodes, and the set of virtual sensor nodes available within the sensor-cloud are

denoted as A, S, and V , respectively.

Definition 5. A physical sensor node is represented as a 7-tuple:

s =< id, t, o, Loc, st, csp,QoS >, t ∈ T, o ∈ O, csp ∈ CSP

where, s.id is a sensor identification number, locally unique under s.csp and the other

parameters are mentioned above in Definitions 1 through 4 and in the previous paragraphs

as well.

Definition 6. An application App running at the end of a user-organization is a 3-tuple

notion expressed as,

App =< Aid, Atype, Aspan >

where Aid is a system generated unique identification for the application, Atype is the

type of the application, and Aspan is the span of the application, as defined in Definition

7.

31

3. Theoretical Characterization of Virtualization and Experimental
Justification for a Paradigm Shift

Definition 7. The span of an application, Aspan, is a 4-tuple expressed as,

Aspan =< Loc1, Loc2, Loc3, Loc4 >

where Loc1, Loc2, Loc3, and Loc4, respectively, indicate the location attributes of the

four vertices (in sequence) of a rectangular region that is of interest to the application.

In a practical scenario, span of an application would essentially refer to a rectangular

sensor network comprising of sensor nodes that are of interest to the application. For a

non-rectangular network, the nearest rectangular approximation is to be considered.

Based on the Atype and Asec, a compatibility function f1 is introduced to select a

subset of sensor types (T ′ ⊂ T) and expressed as,

f1(App.Atype, App.Asec) = {Ti : Ti ∈ T} = T ′ (3.1)

After the types of sensor nodes are decided for an application, the selection of sensor

nodes is done using a simple allocation function, falloc().

The allocation function, defined as falloc : A → S1, maps the set of applications to

a subset of physical sensor nodes S1, such that, S1 ∈ 2S , i.e., the set S1 belongs to the

set of subsets of S, as mentioned earlier. The principle of falloc() involves a sequence of

other intermediate functions f1(), g1(), and g2(). the functionality of g1 is to select a

subset of sensor nodes of one or more given types. Thus, g1 : T → 2S . g1() is defined as,

g1(Tj) = {si|si ∈ S, si.t = Tj} (3.2)

The principle of g2 is to choose the physical sensors based on their physical locations.

The chosen sensor nodes comply with the span of an intended running application. It is

expressed as, g2 : S1 → S2, S1, S2 ∈ 2S .

Combining the definitions of g1(), and g2(), the working model of falloc() is obtained,

and is shown below:

32

3.1. Characterization of Virtualization

falloc(App) = g2(g1(f1(App.Atype, App.Asec)))

= g2(g1(T ′))

= g2(ŝ, |ŝ ∈ S′, S′ ⊂ S, ŝ.t ∈ T ′)

= {s ∈ S1, S1 ⊆ S′, circ(s.Loc,Rs) ⊂ App.Aspan,

s.st = 0, s.QoS ≥ δ}

where Rs is the sensing radius of the sensor node, and δ is a pre-negotiated QoS threshold

value with the CSP and a user-organization. After defining a physical sensor node

resource and an application, mathematically, now a mapping fvir : S → V is introduced

and is expressed as,

fvir(falloc(Appi)) = vAppi
(3.3)

Sensor virtualization is essentially a complex logical partitioning and mapping of

physical sensors into logical groups. Herein lies the significance of mapping functions

that we have been used in this context.

A user-organization visualizes that each of its applications running through sensor-

cloud, is mapped to a virtual sensor. Thus, f(App) = vApp. Our model considers an

application App as input. After computing falloc(App) = S1, fvir takes S1 as input.

Therefore,

fvir(S1) = vApp|x ∈ S1 ∧ x.st = 1 (3.4)

Also, f(App) is defined mathematically as,

f(App) = y|y ∈ G, fvir(falloc(App)) = G = vApp (3.5)

33

3. Theoretical Characterization of Virtualization and Experimental
Justification for a Paradigm Shift

Now some interesting characteristics of the functions of the virtualization model are

presented in Propositions 1 and 2.

Proposition 3.1.1. The mapping f(·) from an application Appi to a virtual sensor v

is injective.

Proof. Let us assume that the co-domain of f is V . In a sensor-cloud, the virtual sensors

are created on a demand-based manner. Thus, the range V ′ of f is never a proper subset

of co-domain, i.e., V ′ 6⊂ V . The CSP cannot have a virtual sensor v that is created, but

not assigned to any user-organization. Thus, ∀v ∈ V,∃Appi ∈ A|f−1(v) = Appi. From

this, it is inferred that V ′ = V .

Let us assume, f(Appi) = vAppi . We try to allocate vAppi to another application

Appj . The physical sensor nodes within vAppi is S1 = falloc(Appi). So, we have to

allocate S1 to Appj . But, ∀s ∈ S1, s.st = 1. We have falloc(Appj) 6= S1. Thus, the

following inequalities hold.

falloc(Appi) 6= falloc(Appj)

or, fvir(falloc(Appi)) 6= fvir(falloc(Appj))

or, vAppi 6= vAppj

Thus, it can be inferred that, vAppi = vAppj ⇒ Appi = Appj . This completes the proof.

Proposition 3.1.2. The mapping fvir(·) of physical to virtual sensor for an application

Appi is surjective (onto).

Proof. It can be proved by the method of contradiction. Let us assume that a particular

running application, Appi, requires a single physical sensor node, and fvir does not have

34

3.1. Characterization of Virtualization

a pre-image, i.e., f−1
vir (·) = ∅. As mentioned in Equation (3.3), fvir(falloc(Appi)) = vAppi

.

Thus,

f−1
vir (vAppi

) = falloc(Appi)⇒ falloc(Appi) = ∅ ⇒ S1 = ∅ (3.6)

This means that no physical sensor node serves application Appi. Thus, Appi is not

currently served by the sensor-cloud. This completes the proof.

Proposition 3.1.3. The worst case asymptotic computational complexity of falloc(·) for

an application Appi, involving t type of sensors, t ∈ T , is O(n(t)), where n(t) is the total

number of physical sensors of type t.

Proof. From Equation 1, t of Appi, t ∈ T can be obtained. After that falloc() computes

and selects sensor nodes s, such that, s.t = t, s ∈ Ŝ, |Ŝ| = n(T). Thus, all sensor nodes of

type t are picked up. Followed by this, functions g1() and g2() are executed. Hence the

worst case asymptotic computational complexity of falloc(·) is O(n(t)). This completes

the proof.

From Proposition 1, it directly follows that every virtual sensor uniquely maps to

a single application in progress and viceversa. However, a physical sensor can serve

multiple applications at a given time. Using Propositions 1 and 2, an example runtime

scenario is analyzed as shown in Table 3.1, consisting of 100 sensor nodes and 3 running

applications. The services of the physical sensor nodes for an application Appi, at a

particular time instant t, constitute a virtual sensor vi,t. It is observed that, v1,t0 =

{s1, s3, s7}. Thus, fvir(s1) = v1. Due to the surjective property of fvir, 6 ∃vi|∃sj ∈

Sfvir(sj) = vi. Also, it is evident that, at a particular time instant t, ∀vi, vj ∈ V , vi and

vj are disjoint. Thus, 6 ∃sk ∈ S : (sk ∈ vi) ∧ (sk ∈ vj).

35

3. Theoretical Characterization of Virtualization and Experimental
Justification for a Paradigm Shift

Table 3.1: Illustration of a runtime scenario within sensor-cloud

Applications Serving time Resources Virtual sensor
App1 t0 s1, s3, s7 v1
App2 t0 s8, s4, s2, s5 v2
App3 t1 s1, s9, s10 v3
App2 t2 s1, s7, s6 v2
App1 t2 s2, s3, s8 v1
App3 t2 s4, s9, s10 v3
App1 t3 s3, s9, s10 v1

3.2 Experimental Justification for Paradigm Shift

In this subsection, a detailed analysis is made based on the performance metrics of

sensor-cloud and a comparative study is performed with conventional WSNs. From a

network point of view, the energy consumption of the nodes and the fault tolerance

of the network are studied and analyzed. From a business point of view, a thorough

evaluation of the cost-effectiveness of sensor-cloud is also done by examining the cash

inflow and outflow characteristics of every actor of sensor-cloud. The experimental setup

of this work is illustrated in Table 3.2.

3.2.1 Performance Metrics

As mentioned above, the following are the metrics to evaluate the performance of sensor-

cloud systems compared to traditional WSNs:

(i) Energy Consumption: The consumption of energy E is analyzed as

E = Etr + Er + Es + Eproc (3.7)

where, Etr, Er, Es, and Eproc are the energy expenses due to transmission, recep-

tion, sensing, and computation, respectively. The unit of energy consumption for

each of these components are assumed to be same for both WSN and sensor-cloud.

36

3.2. Experimental Justification for Paradigm Shift

Table 3.2: Experimental setup

Parameters Values
Time period 5 simulation years (60 simulation months)
Deployment area 500 m × 500 m
Deployment Uniform, random
Number of sensor nodes (N) 1000
Number of sensor owners (η1) 5
Number of end-users (η2) 10
Unit cost price of a node (Cs) 20 currency unit
Unit cost due to deployment (Cdeploy) 3 currency unit/sensor
Unit cost due to maintenance (Cmaintain) 10 currency unit/month
Unit cost due to rent (Crent) 10 currency unit/month
Cost per unit usage of Se-aaS (CSe−aaS) 10 currency unit/month
Communication range [50, 100] m
Transmission energy (Etr) 7 nJ/bit
Computation energy (Eproc) 5 nJ/sec
Sensing energy (Es) 6 nJ/event
Time interval for nodes being faulty (Ω) 5

(ii) Fault Tolerance: Fault-tolerance, F of a network is defined as the total number of

non-faulty nodes present in the network at a particular time. Mathematically,

Ft = Ft−1 − Pf × Ft−1, F0 = N (3.8)

where N and Pf are the total number of operative nodes initially present in the

network and the percentage of faulty nodes, respectively. Here, we assume that,

the number of faulty nodes change with time, However, the percentage of faulty

nodes at a particular time is constant. For example, if there are 100 nodes initially,

after unit time 5 nodes will fail and 95 would remain. Then, at the next time

instant, 4.75 would fail and 90.25 would remain approximately, and so on.

(iii) Cost-effectiveness: For evaluating cost-effectiveness, an analysis of flow of cash

for every actor and a WSN user is studied. Lines of cumulative cost along the

37

3. Theoretical Characterization of Virtualization and Experimental
Justification for a Paradigm Shift

negative ordinate represents a cash outflow CO from the actor, whereas the one

along the positive ordinate represents cash inflow CI to the actor. The costs due

to deployment, maintenance, and rent are denoted by Cdeploy, Cmaintain, and Crent

respectively.

(a) Sensor-owner: For a sensor-owner, the flow of cash is governed by the following

Equations:

COsensor−owner = n1 × (Cs + Cdeploy) (3.9)

CIsensor−owner = n1 × Crent (3.10)

where, n1 is the number of sensors registered by the sensor-owner. Cs is the

unit cost price of a sensor node.

(b) End-user:

• WSN user: For a WSN user,

COwsn = n2 × (Cs + Cdeploy + Cmaintain) + n3 × Cdeploy (3.11)

where n2 and n3 are the total number of sensor nodes in the WSN and

the number of faulty nodes, respectively. A WSN user is basically served

in terms of the sensed data, and there is no cash inflow for such user.

• Sensor-cloud end-user: From a sensor-cloud end-user point of view, the

cash outflow is expressed as follows:

COend−user = n4 × CSe−aaS (3.12)

where n4 is the total number of sensors nodes of which the user has ob-

tained service in a particular month. CSe−aaS is the cost incurred per unit

38

3.2. Experimental Justification for Paradigm Shift

usage of Se-aaS per month.

(c) CSP1: For a CSP, the monthly inflow and outflow of cash are also analyzed

with the help of the following equations.

COcsp = η1 × CIsensor−owner + Ω× n5(Cdeploy + Cmaintain) (3.13)

CIcsp = η2 × COend−user (3.14)

where η1, η2, and Ω are the total number of registered sensor-owners, total

number of end-users, and the monthly time interval after which maintenance

and deployment activities are performed by the CSP, respectively. The number

of faulty sensor nodes after Ω interval of time is denoted by n5.

3.2.2 Explanation of Parameters

The parameters used for this work have been selected on the basis of prior related

works [104–106]. The values of these parameters are set as per the related works in this

domain that are most cited [107–111].

3.2.3 Approach Taken

For the performance evaluation and analysis of the network parameters, i.e., the energy

consumption and fault tolerance, a simulation is conducted over 5 simulation years (60

simulation months). A uniform random deployment of 1000 sensor nodes is conducted

across a deployment area of about 500m × 500m. For simulation of the functionality of

sensors, every sensor is assigned a communication range, and rates of energy consumption

due to transmission, computation, and sensing. Under this setup, the entire environment
1It is to be noted that the third actor in a sensor-cloud infrastructure is the sensor-cloud adminis-

trator. But, the administrator is essentially a non-human actor and hence, does not participate in the
economics of the model. However, although the CSP is not a potential actor of the infrastructure, it is
the most significant business entity of sensor-cloud, and hence the cash flow analysis of the CSP is of
high interest.

39

3. Theoretical Characterization of Virtualization and Experimental
Justification for a Paradigm Shift

is simulated for the afore-mentioned time and is repeated for 50 iterations. The mean

of the data obtained for the different metrics, as discussed in subsection , is plotted and

presented.

For the analysis of the cost-effectiveness of the two paradigms, η1 number of sensors-

owners and η2 number of end-users are considered as per Table 3.2. For the purpose of

evaluation, unit costs for purchase, deployment, maintenance, rent, and for consumption

of Se-aaS are considered as per Table 3.2 and the sensor virtualization, allocation, and

de-allocation are simulated for the simulation period. The demand of end-users are

varied randomly following a Poison distribution with mean sensor requirement of 5 and

for a period of 1 hour.

For the profit analysis of the CSP, 6 different experiments were conducted by varying

the number of end-users from 1 to 20 for a theoretical case study. Each experiment is

repeated over 50 iterations to determine the mean value that is eventually plotted.

3.2.4 Performance Analysis

In this subsection, the performance of sensor-cloud platforms are analyzed thoroughly.

The analysis is performed separately for each of the metrics indicated in subsection 3.2.3.

Firstly, the performance of a single sensor node is investigated in terms of its energy

consumption. Figure 3.1(a) shows the cumulative energy expenses of a sensor node in

terms of sensing, computation, and transmission of packets. In a WSN, intra-network

communication occurs by repetitive multi-hop communication followed by transmission

of packets to a data center. However, in a sensor-cloud environment, energy expenses

due to transmission are mainly attributed to reach the cloud platform via multi-hop

communication. Communication among sensor nodes is very rare (or does not occur),

and, hence, large amount of energy is conserved. Moreover, unlike WSN, a particular

sensor node does not necessarily serve a user-organization, even if it is application-

compatible. Periodic scheduling is followed by the CSPs among multiple application-

40

3.2. Experimental Justification for Paradigm Shift

compatible sensor nodes with a view to distribute load and conserve resources. The figure

presents that sensor-cloud achieves 36.68% decrease in energy consumption, compared

to that of a WSN.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7x 10
8

Time (months)

C
um

ul
at

iv
e

E
ne

rg
y

C
on

su
m

pt
io

n
(n

J)

Due to transmission in WSN
Due to transmission in sensor−cloud
Due to computation in WSN
Due to computation in sensor−cloud
Total expense in WSN
Total expense in sensor−cloud

(a) Comparative analysis for cumulative energy consumption

0 50 100 150 200
0

200

400

600

800

1000

Fa
ul

t T
ol

er
an

ce

Time (in months)

Number of CSPs = 5
WSN
Number of CSPs = 10

(b) Comparative analysis of cumulative fault tolerance

Figure 3.1: Comparative performance analysis of sensor-cloud and WSN

Next, the performance is analyzed from a network point of view in terms of fault

41

3. Theoretical Characterization of Virtualization and Experimental
Justification for a Paradigm Shift

tolerance of a network. Figure 3.1(b) illustrates a comparative study of fault-tolerance in

WSNs and sensor-cloud. Fault-tolerance is a major cause of concern in WSN. Assuming

a specific fault-tolerance rate, a WSN reaches a dead state unless a redeployment scheme

is considered atleast once during its lifetime. On the other hand, sensor-cloud involves

multiple service providers who can render the best possible sensor nodes at any point

of time to address fault-tolerance of resources. Once a user-organization’s application

demand is recognized, the cloud infrastructure allocates a CSP, which can best serve

the user-organization in terms of energy level, accuracy, QoS, compatibility of sensor

node specification, and location specific feasibility. Figure 3.1(b) indicates the increase

in network performance with the increase in the number of CSPs.

10 20 30 40 50 60
−6000

−4000

−2000

0

2000

4000

6000

8000

Time (months)

C
um

ul
at

iv
e

C
os

t (
cu

rr
en

cy
 u

ni
t)

Expenditure in sensor−cloud
Expenditure in WSN
Inflow due to rent
Net−profit

(a) Analysis of cost-effectiveness for sensor-owner

10 20 30 40 50 60
−6000

−5000

−4000

−3000

−2000

−1000

0

Time (months)

C
um

ul
at

iv
e

C
os

t (
cu

rr
en

cy
 u

ni
t)

Expenditure in sensor−cloud
Expenditure in WSN

(b) Analysis of cost-effectiveness for end-user

10 20 30 40 50 60
−5

0

5

10

15

20x 10
4

Time (months)

C
um

ul
at

iv
e

C
os

t (
cu

rr
en

cy
 u

ni
t)

Rental fee of sensor−owners
Expenditure due to overhead
Net−profit
Inflow from end−users

(c) Analysis of cost-effectiveness for CSP

Figure 3.2: Comparative cost-effectiveness analysis of sensor-cloud and WSN

42

3.2. Experimental Justification for Paradigm Shift

Now, a comparative study of various sensor-cloud actors and a WSN-user is inves-

tigated from a profit perspective. Figure 3.2(a) illustrates the perspective of a sensor-

owner, who simply owns and deploys his/her sensor nodes within the sensor-cloud envi-

ronment. In a WSN, the sensor-owner is eventually the WSN user. It is the responsibility

of a WSN user to buy, deploy, maintain and redeploy sensor nodes, as and when needed.

The cumulative cash outflow of a WSN user and a sensor-owner are indicated over time.

The cash outflow of the sensor-owner occurs only once during the network lifetime, due

to ownership and deployment of sensor nodes. The inflow of the sensor-owner is mea-

sured by the monthly rental fee that it obtains from the CSP. Finally, the overall profit

of the sensor-owner is also denoted in the figure. Figure 3.2(a) depicts that a single

sensor-owner can reduce 33.83% of cash-outflow in sensor-cloud environment, compared

to a WSN.

The perspective and profit analysis for an end-user is different. Figure 3.2(b) illus-

trates a comparison with respect to the cost incurred by an end-user. End-user of a WSN

is responsible for several jobs involving maintenance and overhead. However, in sensor-

cloud, an end-user perceives a sensor as an instantaneous service (just like electricity,

water), rather than as a hardware. Thus, s/he is liable to pay for only those units of Se-

aaS that s/he has actually consumed. The profit of an end-user cannot be measured in

terms of monetary units as it is relevant in terms of countable units of Se-aaS. The figure

shows an average of 14.72% decrease in the expenditure of an end-user-organization.

In Figure 3.2(c), the profit perspective of a CSP within sensor-cloud is depicted.

As mentioned earlier, the CSP has to pay a monthly rental-fee to each sensor owner,

from whose resources s/he renders services to the end-users. Figure 3.2(c) illustrates

the cumulative cash outflow for multiple sensor-owners. Some amount of cash outflow

occurs due to the periodic maintenance and redeployment of the physical sensor nodes.

The principal source of cash inflow is the end-users, who use the on-demand service and

pay to the CSP accordingly. The net profit of the CSP is also indicated over time.

43

3. Theoretical Characterization of Virtualization and Experimental
Justification for a Paradigm Shift

10 20 30 40 50 60
−100

0

100

200

300

400

500

600

Time (months)

P
ro

fit
 (

cu
rr

en
cy

 u
ni

t)

Number of end−users = 20
Number of end−users = 15
Number of end−users = 10
Number of end−users = 5
Number of end−users = 2
Number of end−users = 1

Figure 3.3: Profit analysis of CSP in a sensor-cloud

It is worthy to mention that a sensor-cloud can perform, only when the required

resource type is actually available. Therefore, some sensor nodes have to be deployed

by some sensor-owner. If a sensor-type is quite uncommon or less-demanded, it involves

high overhead and maintenance cost compared to that of usage. Thus, if the number of

end-user-organizations demanding for a particular resource type Ti is typically low, the

performance of sensor-cloud reduces almost similar to that of WSN. Figure 3.3 reflects a

scenario where end-user organizations demand a specific resource type. As the number of

such users reduces, the profit of CSP reduces, eventually turns into loss. In such cases it

is better to deploy a customized sensor network on behalf of the end-user-organizations.

3.3 Summary

The proposed Chapter presents a theoretical modeling of virtualization for sensor-cloud

environment. A detailed description of the perspectives of end-user organizations and the

CSP are illustrated and analyzed. The process of mapping an application to its physical

resources and the procedure for virtualization of the resources are also discussed. Finally,

a comparative evaluation of performance between sensor-cloud and WSN is presented.

44

3.3. Summary

Results show that sensor-cloud accomplishes better performance compared to WSN in

most of the cases. However, in some exceptional situations, sensor-cloud was found

not to perform reasonably better than traditional WSNs. Thus, a paradigm shift is

suggested from the existing WSN-based technology to a sensor-cloud platform as it

would be beneficial in terms of performance, usability, and profit.

45

Chapter 4

Dynamic and Adaptive Data

Caching Within Sensor-cloud

In the architecture of sensor-cloud, as mentioned in Chapter 1, it is observed that sensor-

cloud directly accesses the underlying physical nodes, as per the application demand.

Therefore, as illustrated in Figure 4.1(a), whenever a physical node becomes an active

component of a VS, it is selected, and data is fetched from it. Thus, if a running appli-

cation has a high rate of demand from its VSs, the component nodes of the VSs engage

themselves in continuous data communications with the sensor-cloud. Thus, the contin-

uous process of data retrieval and data logging occurs with time. However, in a real-life

scenario involving a practical sensor-based application, the change in the environment

may be the following – (a) sufficiently slow, thereby resulting in a negligible rate of change

of data of the sensed attributes (e.g. applications monitoring air temperature/pressure)

or (b) very fast, thereby resulting is a faster rate of change of environment (e.g. appli-

cations in vehicular networks). For a small or moderate change in the environment, the

sensed data remains almost unaltered. Thus, continuous transmission of the unaltered

sensed data leads to unnecessary energy loss due to redundant transmissions. Moreover,

it takes a toll on the lifetime of the individual sensor nodes, as well as the lifetime of

47

4. Dynamic and Adaptive Data Caching Within Sensor-cloud

the network. The significance of data caching in sensor-cloud becomes important in this

context. Data caching should be adaptive to the rate of change of the environment.

(a) Existing architecture

(b) Cache-enabled architecture

Figure 4.1: Existing and proposed architectures of caching in sensor-cloud

48

4.1. Contributions of the Chapter

4.1 Contributions of the Chapter

As mentioned above, in real-life scenarios, the change of the physical environment in

terms of sensor reading is imperceptible, when diagnosed very frequently, i.e., the change

of the sensed data is generally negligible within a small time interval. The contribution

of this Chapter is to design an optimal caching mechanism within sensor-cloud to ob-

tain resource efficiency in terms of energy, and network lifetime. The proposed data

caching mechanism is dynamic, and is adaptive to the change of the physical envi-

ronment, thereby preserving the accuracy of information, and conserving the network

resources, simultaneously. The user requests for the sensed data are served from the

cache when the change of the physical environment is gradual. The work determines an

optimal caching interval beyond which fresh data is requested from the physical sensors,

and cached again. Thus, the proposed solution can significantly reduce the expenditure

of transmission energy, and enhances the network lifetime.

4.2 Proposed Architecture for Caching

In this Section, the proposed cache-enabled architecture of sensor-cloud infrastructure is

presented. As illustrated in Figure 4.1(b), two caches are considered – the primary cache

or the External Cache (EC), and the secondary cache or the Internal Cache (IC). The EC

is external to the cloud system and is an interfacing cache that resides between the cloud,

and the underlying network. EC is sensitive to the change in the physical environment,

thereby dynamically updating and refreshing its content to retain synchronization with

the current state of the physical environment. The working principle of EC is based

on the expected rate of change of the environment. The IC, on the other hand, is

located within the cloud, and is updated in coherence with the dynamism of the EC. IC

obtains the information from EC and synchronizes it with the variable demand rate of

the end-user applications.

49

4. Dynamic and Adaptive Data Caching Within Sensor-cloud

4.2.1 Rationale behind Two Cache Units

The position of the IC is within a Virtual Machine (VM) allocated to an end-user. When

an end-user E1 requests for Se-aaS from a particular set of sensors for the first time,

the data query is redirected to the EC. If the data has been previously cached, and

the cached data has not yet expired, the corresponding data is fetched from the EC

and transmitted to the VM (VM1) of E1. The data received at VM1 is further cached

within IC1 so that any subsequent query generated by E1 involving data retrieval from

the same set of sensors may be obtained from IC1. Now, if another end-user E2 wishes

to access the sensor data from the same set of sensors, the corresponding data query is

fed with cached data retrieved from EC subjected to the recency of the data.

4.3 Model of the External Cache

In this Section, the working principle of the EC is discussed. The steps are also indicated

in algorithm format at the end of this Section. The goal of EC is to determine an optimal

caching interval ∆t, based on the history of the sensed data from a particular sensor s.

Thus, given the last k readings R1 = {r1, r2, ..., rk} at timestamps T1 = {t1, t2, ..., tk},

the goal is to find k′, such that the caching interval ∆t = k′− k is maximum, subject to

certain constraints.

Initially, some of the required metrics of the work are defined.

Definition 8. The current memory m of EC, at time t (m(t)), is a k tuple, where k is

a pre-negotiated system value. m(t) is expressed as,

m(t) = {(r1, t1), (r2, t2), ..., (rk, tk)}, ri ∈ R1, tj ∈ T1 (4.1)

Thus, at a given time, the mean rate of change of environment, e, is obtained as,

50

4.3. Model of the External Cache

e =

k∑
i=2
| m(t).ri −m(t).ri−1 |

k∑
i=2

m(t).ti −m(t).ti−1

(4.2)

Definition 9. The expected rate of change of environment, e, for a particular physical

sensor, is based on the ith degree of the rate of change of the environment, 1 ≤ i ≤ k.

Thus,

E(e) ∝
(
dR1
dT1

+ d2R1
dT 2

1
+ ...+ dkR1

dT k1

)
(4.3)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Time (in mSec)

R
at

e
of

 c
ha

ng
e

of
 e

nv
ir

on
m

en
t (

e)

R
1

R
1
’

R
1
’’

R
1
’’’

(a) R1 ∼ P (100, 20)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Time (in mSec)

R
at

e
of

 c
ha

ng
e

of
 e

nv
ir

on
m

en
t (

e)

R
1

R
1
’

R
1
’’

R
1
’’’

(b) R1 ∼ P (100, 50)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Time (in mSec)

R
at

e
of

 c
ha

ng
e

of
 e

nv
ir

on
m

en
t (

e)

R
1

R
1
’

R
1
’’

R
1
’’’

(c) R1 ∼ P (100, 90)

Figure 4.2: Analysis of rate of change of physical environment with time

For the sake of justification of Equation (4.3), an experiment was performed for

51

4. Dynamic and Adaptive Data Caching Within Sensor-cloud

the 100 time instants (in milli second), and the data were approximated to follow a

Poisson distribution [112] with n = 100, and varied mean µ = (20, 50, 90), as shown in

Figures 4.2(a), 4.2(b), and 4.2(c), respectively. It is observed that the rate of change of

the environment is significant up to the 2nd order, beyond which the rate of change is

minimal. Hence, for the sake of simplicity, Equation (4.3) is revised as,

E(e) = c1
dR1
dT1

+ c2
d2R1
dT 2

1
(4.4)

E(e) should be less than a threshold value ethreshold, beyond which re-caching should

occur to maintain accuracy of data. Having estimated the expected rate of change of

environment, now the constraint is designed to satisfy energy efficiency of the underlying

physical sensor network. Assuming α and β as the respective energy cost associated with

per unit of communication (both transmission and reception), and per state transition,

the cost C incurred for obtaining non-cached data directly from the physical network is

inferred as,

C = 2αEtr + βEst (4.5)

where Etr, and Est are the energy expended due to communication, and state transition,

respectively. A factor of 2 is associated with Etr, as it involves the transmission of a

signal to the respective sensor and obtaining data packet from it. Est is consumed mainly

due to transition of the state of the node from passive (idle or not transmitting) to active

(transmitting) [113]. The cumulative energy expenditure till the next time instant for

caching (k′) is expressed as,

f2(k′) =
k′∑
ti=2

(
2αEtr + βEst + (ti − ti−1)γEs

)

= k′C +
k∑
t=2

(ti − ti−1)γEs + (k′ − k)γEs (4.6)

52

4.3. Model of the External Cache

where γ is the energy cost associated with per unit sensing activity, and Es is the energy

expended due to sensing. Now, a multi-objective optimization problem is formulated as,

Maximize ∆k = k′ − k

i.e., Minimize f1(k′) = 1
∆k = 1

k′ − k
(4.7)

Minimize f2(k′) (4.8)

subject to, f3(T1) = c1
dR1
dT1

+ c2
d2R1
dT 2

1
< ethreshold (4.9)

Equation (4.9) accounts for the adaptability of EC. Thus, using the method of scalariza-

tion, and combining Equations (4.7) through (4.9), the resulting minimization problem

is stated as,

Minimize L(k′, T1) = k′C +
k∑
t=2

(ti − ti−1)γEs + (k′ − k)γEs

−α1

(1
k′ − k

)
− α2

(
c1
dR1
dT1

+ c2
d2R1
dT 2

1
− ethreshold

)
(4.10)

Therefore,
δL

δk′
= C + γEs + α1

(k′ − k)2 = 0, (4.11)

δL

δT1
= α2

[
c1
d2R1
dT 2

1
+ c2

d3R1
dT 3

1

]
= 0 (4.12)

Using Equations (4.10) through (4.12), the optimal value of k′∗ obtained. Thus, EC

defines a optimal caching interval ∆k∗ = k′∗−k that minimizes the energy consumption

of the physical nodes, and is adaptive to the dynamics of the physical environment. The

schedule for re-caching commences at the end of every caching interval. Data requests,

53

4. Dynamic and Adaptive Data Caching Within Sensor-cloud

within the caching interval, are served from the EC itself.
Input:

1. Current memory m of EC, at time t: m(t).

Output:

The next caching instant at EC: k′.

1 Compute the mean rate of change of environment e (Equation 4.2)

2 Compute the expected rate of change of environment E(e) (Equation 4.4)

3 while f3(T1) = c1
dR1
dT1

+ c2
d2R1
dT 2

1
< ethreshold do

4 for j = 1 to k do

5 Compute ∆k and store in a temporary variable

6 Update temporary variable if ∆k is bigger

7 end

8 Output temporary variable

9 end
Algorithm 2: Algorithm with EC

4.4 Model of the Internal Cache

This Section illustrates the working model of the IC. The steps are also indicated in

algorithm format at the end of this Section. The IC primarily handles the data requests

from the user-applications, and decides to serve the data either directly from the cache or

re-caches the data from the EC and then serves it. If the sequence of the data provisioned

to the end-users at {ti} be d, d = {di}, 1 ≤ i ≤ p. Initially, the first p readings from EC

are directly fed into IC for preparing the history. Thus, the expected rate of change of

EC, e′, is given as,

E(e′) =

k∑
j=2
| dj − dj−1 |

k∑
i=2

ti − ti−1

(4.13)

Definition 10. The mean accuracy Â of data provisioning is defined as the inverse of

54

4.4. Model of the Internal Cache

the Root Mean Square Error (RMSE) of the sensor readings at EC and IC, evaluated for

the previous j time instants. Thus, mean accuracy of a data at time t is expressed as,

Â =
√√√√√√ j

t∑
i=t−j+1

(m(t).ri − di)2
(4.14)

For accurate servicing of data,
t∑

i=t−j+1
(m(t).ri − di)2 → r, where r is an extremely

small value, r 6= 0. Assuming that data has been cached within IC at time k, the

minimization problem for IC is expressed as,

Maximize (k′′ − k) i.e., Minimize g1(k′) = 1
k′′ − k

(4.15)

where k′′ is the next scheduled instant for caching within IC, subjected to the constraints,

k′′∑
i=k′′−j+1

(m(k′′).ri − di)2 − r ' 0 (4.16)

Thus, using Equations (4.15) and (4.16), the solution set for k′′ is expressed as,

k ∈ min
k<h<g

{
max

{ h∑
i=h−j+1

(m(h).ri − di)2
}}

(4.17)

g∑
i=g−j+1

(m(g).ri − di)2 > r (4.18)

After obtaining k′′, the dynamic caching of IC can be executed by maintaining data

55

4. Dynamic and Adaptive Data Caching Within Sensor-cloud

provisioning accuracy, simultaneously.
Input:

1. Sequence of the data provisioned to the end-users at {ti}: d,

d = {di}, 1 ≤ i ≤ p.

Output:

The next caching instant at IC: k′′.

1 Compute the expected rate of change of environment in EC E(e′) (Equation 4.13)

2 Compute the mean accuracy of data provisioning A (Equation 4.14)

3 while
k′′∑

i=k′′−j+1
(m(k′′).ri − di)2 − r ' 0 do

4 for j = 1 to d do

5 Compute k′′ − k and store in a temporary variable

6 Update temporary variable if k′′ − k is bigger

7 end

8 Output temporary variable

9 end
Algorithm 4: Algorithm with IC

4.5 Theoretical Analysis

Proposition 4.5.1. If λ and d̂ are, respectively, the non-uniform demand rate, and the

data provisioning rate for p time instants, the mean accuracy Â has a lower bound Âmin.

Proof. A non-uniform demand sequence is characterized by, λ = {λj}, 1 ≤ j ≤ p, where

λi−λi−1 6= λl−λl−1, i 6= l, 2 ≤ i, l ≤ p. Also, d = {dj}, 1 ≤ j ≤ p. Let us assume that Â

has no lower bound. Therefore, since θth time instant caching did not occur to preserve

accuracy. Thus, using Equation (4.14), it can be obtained that,

t∑
i=t−j+1

(m(t).ri − dθ)2 >
t+1∑

i=t−j+2
(m(t).ri − dθ)2 (4.19)

Thus, for a very high value γ, at a particular time t′,

56

4.6. Performance Evaluation

t∑
i=t−j+1

(m(t).ri − dθ)2 → γ (4.20)

However, as γ � r, ∃g as per Equation (4.18). Thus, caching must have occurred at

least once to reflect the data of IC, as dθ+1. Naturally, {(m(t).ri − dθ)2} is an increasing

sequence till g, from which it can be inferred that Âmin is bounded by a lower value.

This concludes the proof.

Proposition 4.5.2. Assuming k and k′ as the previous, and the next instant of caching

within EC, respectively, ∆k = k′ − k always possesses a lower and an upper bound as

∆kmin, and ∆kmax, respectively.

Proof. ∆k is minimum, when E(e) � ethreshold, i.e. when the environment is highly

changing . Thus,

α2(c1
dR1
dT1

+ c2
d2R1
dT 2

1
− ethreshold)→ h (4.21)

where h is a value of high magnitude, and Equation (4.21) becomes the dominant con-

straint. Thus, as per Equation (4.10), L(k′, T1) will have its minimum value at knew,

knew → k. Thus, ∆k = knew − k = ∆kmin ' 0. On the other hand, for a gradually

changing environment, c1
dR1
dT1

+ c2
d2R1
dT 2

1
� ethreshold. However, if {qi} be an increasing

sequence,
∑
i=j

(qi− qi−1)γEs >
∑

i=j+1
(qi− qi−1)γEs. Thus, L(k′, T1) obtains its maximum

value at knew, where knew − k 6→ 0, and ∆kmax = knew − k = b, where b is of significant

magnitude. This concludes the proof.

4.6 Performance Evaluation

This Section presents the overall evaluation of the performance of the proposed dy-

namic adaptive caching mechanism. The experiments are performed in Matlab, and the

experimental setup is illustrated in Table 4.1.

57

4. Dynamic and Adaptive Data Caching Within Sensor-cloud

Table 4.1: Experimental setup

Parameters Values
Deployment area 500 m × 500 m
Deployment Uniform, random
Number of nodes 100
Transmission energy (Etr) 7 nJ/bit
Energy due to state transition (Est) 30 nJ
Sensing energy (Es) 6 nJ/event
Number of time instants 100

4.6.1 Explanation of Parameters

The parameters used for this work have been selected on the basis of prior related

works [104–106]. The values of these parameters are set as per the related works in this

domain that are most cited [107–111].

4.6.2 Approach Taken

For the performance evaluation and analysis of the network parameters, i.e., the energy

consumption and network lifetime, a simulation is conducted over 100 time instants.

A uniform random deployment of 100 sensor nodes is conducted across a deployment

area of about 500 × 500. For simulation of the functionality of sensors, every sensor is

assigned a communication range, and rates of energy consumption due to transmission,

computation, and sensing as per Table 3.2. Under this setup, the entire environment is

simulated for the afore-mentioned time and is repeated for 50 iterations. The mean of

the data obtained for the different metrics is plotted and presented.

To justify the correctness of the computation of E(e) and E(e′), as mentioned in

Equation (4.4) and (4.13), respectively, an experiment is performed on randomized sen-

sor readings, over 100 instants of time. The experiment is repeated for stable (gradually

changing), and unstable (fast and sudden changing) scenarios of the physical environ-

ment, as shown in Figures 4.3(a), and 4.3(b), respectively.

58

4.6. Performance Evaluation

For the analysis of adaptiveness and dynamism of caching, a set of random sensor

values are enforced within a logical pipeline and data is cached as per the proposed

algorithms for EC and IC. This whole experiment is continued for 100 time instants and

the data is eventually plotted in Figure 4.6.

0 20 40 60 80 100
−5

0

5

Time (in second)

S
en

so
r

da
ta

 v
al

ue
s,

 E
(R

),
 E

(d
)

(u
ni

t)

Sensor data magnitude
Expected value in EC
Expected value in IC

(a) Stable environment

0 20 40 60 80 100
−20

−10

0

10

20

30

40

Time (in second)

S
en

so
r

da
ta

 v
al

ue
s,

 E
(R

),
 E

(d
)

(u
ni

t)

Sensor data magnitude
Expected value in EC
Expected value in IC

(b) Unstable environment

Figure 4.3: Study of the expectation of the sensed data with time

59

4. Dynamic and Adaptive Data Caching Within Sensor-cloud

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80 90 100

R
o
o

t
M

ea
n
 s

q
u

ar
e

E
rr

o
r

(u
n

it
)

Time (in second)

EC IC

(a) Stable environment

 0

 4

 8

 12

 16

10 20 30 40 50 60 70 80 90 100

R
o
o

t
M

ea
n
 s

q
u

ar
e

E
rr

o
r

(u
n

it
)

Time (in second)

EC IC

(b) Unstable environment

Figure 4.4: Analysis of the RMSE in computation of the expectation of sensed data

4.6.3 Performance Analysis

Figure 4.3(a) exhibits a gradual, and slow-paced change in the environment, thereby

leading to close estimation of the sensed values in EC, and IC. On the other hand,

Figure 4.3(b) shows the rate of change of the data for a turbulent environment leading

to little deviations in the process of estimation.

The accuracy of computation, as given in Definition 10, is evaluated in terms of the

computation of the RMSE for the above two scenarios. Figure 4.4(a) clearly shows the

RMSE obtained for expecting the rate of change of environment in a stable condition.

The error obtained for the first few time instants are initially high, due to the gradual

learning or adaptiveness of the caching process, after which the error falls to a negligible

value. For an unstable environment, as depicted in Figure 4.4(b), the RMSE in expecting

the change of the environment rises and falls sporadically based on the rate of change of

the environment.

The energy efficiency of the proposed caching mechanism within EC is studied in

Figure 4.5(a) in terms of the cumulative energy consumption, E, expressed as,

E(j) =
j∑

ti=1

(
2αEtr + βEst + (ti − ti−1)γEs

)
(4.22)

60

4.6. Performance Evaluation

20 40 60 80 100
0

1000

2000

3000

4000

5000

Time (in second)

C
um

ul
at

iv
e

E
ne

rg
y

C
on

su
m

pt
io

n
(i

n
nJ

)

Communication (conventional)
Communication (using caching)
Total (conventional)
Total (using caching)

(a) Analysis of energy efficiency

20 40 60 80 100
20

40

60

80

100

Time (in second)

N
et

w
or

k
L

if
et

im
e

(i
n

%
)

Conventional
Using caching

(b) Analysis of network lifetime

Figure 4.5: Overall analysis of the network resources

∀1 ≤ j ≤ 100. Conventional techniques generally follow a periodic data transmission

scheme [114], thus, consuming more energy, compared to those that follow caching in

which the transmission of the physical nodes is sensitive to significant change of the

environment. Mathematically, the consumption of energy of individual sensor nodes is

also reduced by 37.1%. This, in turn, enhances the network lifetime N of the nodes, as

shown in Figure 4.5(b). N is computed as,

61

4. Dynamic and Adaptive Data Caching Within Sensor-cloud

0 20 40 60 80 100
0

0.5

1

1.5

Time (in second)

V
al

ue
s

(∆
 R

)
(u

ni
t)

Original change of data
Cache intervals in EC

(a) Caching in EC

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Time (in second)

V
al

ue
s

(∆
 d

)
(u

ni
t)

Change of data in EC
Cache intervals in IC

(b) Caching in IC

Figure 4.6: Analysis of adaptiveness and dynamism of caching

N(t) = Nmax − E(t)
Nmax

× 100% (4.23)

where Nmax is assumed to be 6000nJ . Figure 4.5(b) clearly indicates the improvement

of the network lifetime by using caching mechanisms, compared to the conventional ones.

The network lifetime was observed to increase by 48.43%.

Figure 4.6 examines the performance of the proposed caching techniques in EC, and

62

4.7. Summary

IC. The stem plots in Figures 4.6(a), and 4.6(b) indicate the scheduling of caching in

both EC and IC, respectively. A 0 indicates no caching, and a 1 indicates re-caching.

Based on the substantial change in the readings of the physical sensors, the caching is

dynamically performed within EC, as shown in Figure 4.6(a). The caching within IC

depends on the rate of change of data within EC. However, the frequency of caching is

much less in IC, compared to EC. Over 100 time instants, the deviation of the cached

data was observed, compared to the original data and it is found that, due to caching,

data within EC, and IC are respectively maximally deviated by 7.79%, and 14.09%, only.

Therefore, in the worst case, the demand at t = 100 is served with a data of t = 85.91,

thereby accounting for a minimum of 85.91% recentness of the provisioned data.

4.7 Summary

This Chapter introduces an adaptive caching mechanism to prevent the unnecessary de-

pletion of network resources. The Chapter proposes external, and internal caches, which

dynamically and optimally cache the sensor data, based on the variable rate of change

of the physical environment, thereby achieving reduction in redundant transmissions of

data packets from the underlying sensor network to the sensor-cloud.

63

Chapter 5

Dynamic and Optimal Pricing

Scheme for Se-aaS

As sensor-cloud infrastructure is the extension of cloud computing, it abides by the

features that are intrinsic to cloud based environments. A cloud platform generally

conforms with a pay-per-use model [51, 115], in which the end-users pay only for those

resources that they have utilized. Within sensor-cloud infrastructure, end-users utilize

the physical sensors and the cloud infrastructure as per their demand and pay as per

their usage, to the CSP. Thus, it is necessary to develop a pricing scheme for Se-aaS to

quantify the usage of the end-users and charge them accordingly. The profit incurred

from the payment obtained from the end-users is not only enjoyed by the CSP, but is

also shared among the several sensor owners whose physical sensors are registered within

sensor-cloud [19].

This Chapter focuses to design a dynamic and optimal pricing scheme, specifically for

Se-aaS. Currently, different pricing models are suggested for the various service oriented

architectures (SOAs), namely Infrastructure-as-a-service (IaaS) [116, 117], Platform-as-

a-Service (PaaS) [118], and Software-as-a-Service (SaaS) [119]. However, these pricing

models have been designed for homogeneous types of services such as infrastructure,

65

5. Dynamic and Optimal Pricing Scheme for Se-aaS

platform and software. On the contrary, Se-aaS follows a heterogeneous SOA in which

service is provisioned in the form of hardware as well as infrastructure to the end-users.

Therefore, there arises a necessity to design a pricing scheme specifically for Se-aaS.

5.1 Contributions of the Chapter

The significant research contributions of this Chapter are stated below:

i) In this Chapter, a pricing model is designed for heterogeneous SOA, in Se-aaS, in

which the end-users need to pay for utilizing the services of the physical sensor

nodes and the sensor-cloud infrastructure, as per their application demand.

ii) The proposed algorithm for pricing of the physical nodes is context-aware, and

the price charged is purely based on the Quality of Information (QoI) that the

end-user obtains finally.

iii) The work takes into account the end-users’ satisfaction and their net utility as

one of the factors to establish the optimality in the pricing. The objective is

to maximize the expected individual profit made by the several registered sensor

owners along with the profit made by the CSP.

iv) The proposed pricing model is energy-efficient, as computations are primarily per-

formed at the sensor-cloud end, rather than at the physical sensor network, thereby,

reducing the complexity of pricing computation among the physical sensor nodes.

v) The work presents a comparative study of the proposed algorithms with some of

the traditional hardware pricing algorithms. The former clearly outperforms the

latter in terms of residual energy, proximity with Base Station (BS), Received Sig-

nal Strength (RSS), and overhead.

66

5.2. Problem Scenario

Figure 5.1: Network architecture of sensor-cloud

5.2 Problem Scenario

This Chapter focuses on determining the price to be charged by the CSP from the

end-users (based on his/her usage), to achieve the following goals:

i) Optimizing the profit made by the CSP.

ii) Optimizing the profit of the sensor owners whose physical sensor nodes either

participate as the source sensor nodes or as the intermediate hop nodes.

iii) Ensuring that the end-users are not overcharged, thereby achieving end-users’ sat-

isfaction

As per the requirement of the end-users, the CSP determines the source sensor node,

and the other participating physical sensor nodes that are to be activated. The source

sensor node may not be within direct reach of the BS, thereby leading to a multi-hop

transmission. The other nodes of the network are encouraged to participate as the

67

5. Dynamic and Optimal Pricing Scheme for Se-aaS

intermediate hops, as they are offered incentives for their participation. The incentives

are determined as per the policy to gain a net positive profit.

Some cost is also incurred for using and maintaining the sensor-cloud’s infrastructural

resources – the virtual machines, the virtual sensors, the IT resources, the processing

ability of the cloud, and so on. Considering all these related aspects, the CSP regulates

the price to be paid by the end-users. Figure 5.1 provides a pictorial illustration of the

scenario.

5.3 System Model

There is a set of m physical sensor nodes, N = {n1, n2, n3, . . . , nm}, within the physical

sensor network of the sensor-cloud infrastructure, registered by their respective sensor

owners. O represents the set of sensor owners. The owner of sensor node ni is denoted

by o(ni). E = {e1, e2, e3, . . . , el}, represents the set of end-users requesting for the data

from the CSP. The components of the proposed system are formally defined as follows:

• O′ = {o(n1), o(n2), o(n3), ..., o(n′)}, n′ < n, where O′ ⊂ O represents the sensor

owners whose physical sensor nodes are actually utilized during the data transmis-

sion for a particular end-user e.

• n1 represents the source sensor node, ni, 2 ≤ i ≤ n′, represents the hop node.

• pto(nj),1 ≤ j ≤ n′ represents the price charged by the sensor owner o(nj) for

utilizing its physical sensor node at time instant t.

• VMe represents the Virtual Machine created for the end-user e, e ∈ E.

• V Se = {vs1, vs2, ...vsk(t)}, where V Se represents the set of virtual sensors created

within VMe at time instant t for e.

• CVMe(t) represents the cost of VMe at time t.

68

5.3. System Model

• pVMe represents the price charged by the CSP from end-user e for using VMe.

• pvsi(t) represents the price charged by the CSP to the end-user e for the virtual

sensor vsi at time instant t.

• λevsi
(t) represents the demand by the end-user e for the virtual sensor vsi at time

instant t.

• c represents the criticality of the data per unit time.

• R represents the total number of requests made by all the end-users.

• w represents the service rate of the CSP.

5.3.1 Assumptions of the Model

i) A single CSP and multiple sensor owners are present in the system, i.e., the system

is monopolized with respect to the CSP, and oligopolized with respect to the sensor

owners.

ii) An end-user is allocated a single VM. However, allocation of multiple virtual sensor

nodes within the VM is permitted.

iii) An end-user continues to accept the prices charged at time t, until s/he is dissat-

isfied at time t+ 11.

iv) The physical sensor nodes periodically transmit control packets to the cloud end

to enable the CSP to be aware of the health information of the nodes.

v) Every physical sensor node is static, and is aware of the location coordinates of

itself, its neighbors and the corresponding BS.

In Figure 5.1, the sensor owner o(n1) owns the source sensor node which generates

the required data. o(n1) needs the help of any immediate physical sensor node in order
1The upper bound of t+ 1 is discussed under strategy profile in subsection 5.3.2.2.

69

5. Dynamic and Optimal Pricing Scheme for Se-aaS

to transmit the data. The CSP encourages the neighboring physical nodes of the source

sensor node to participate in the data transmission. The source sensor node n1 chooses

one of its neighbors as the next hop node n2, based on a utility value. o(n1) charges

o(n2) with price pto(n1) 1. pt
o(n1) is accepted by the hop node owned by the sensor

owner o(n2). With the intention to make profit, o(n2) charges a price pto(n2) greater

than pto(n1) to its next willing participant. This pricing scheme continues until the data

finally reaches the last participating hop node. The last hop node owned by the sensor

owner o(n′) charges a price pto(n
′) to the end-user e who actually requested the data.

Furthermore, it is intuitive that pto(n
′) > pt

o(n′−1) > ... > pt
o(n2) > pt

o(n1). In order to

transfer the required data, the infrastructural resources of the CSP are utilized. Based

on the end-user demand, the virtual machines and the component virtual sensors are

created for which the CSP charges some amount of price. This profit is solely enjoyed

by the CSP for provisioning infrastructure as a service. The pricing scheme of Se-aaS is

broken up into two distinct modules and propose two different algorithms:

a) Pricing attributed to Hardware (pH)

b) Pricing attributed to Infrastructure (pI).

5.3.2 pH: Pricing attributed to Hardware

The pricing attributed to the usage of the physical sensor nodes concern the profit of

the respective sensor owners. As the source sensor node n1 generates the raw sensed

data, it either directly transmits it to the BS in a single-hop, or follows a multi-hop

route. Motivated by the pricing strategies mentioned in [112,120], the proposed pricing

model is designed for the hardware usage. A context aware optimal pricing scheme is

propounded for the usage of the physical sensor nodes.

1Although it appears that the price charged by one sensor owner is paid by another, the net price is
essentially paid by the end-user.

70

5.3. System Model

5.3.2.1 Selection of the next hop node

In order to transmit data from the source sensor node n1 to the Base Station BS 1, n1

selects the next hop node n2 with the maximum utility η among all the nominated hop

nodes, in set Hn1 . The transmission radius of n1 at t is denoted as rn1(t). The set of

physical sensor nodes that are located within the transmission area An1(t) = πrn1(t)2 is

considered to be the nominated hop nodes. Thus, Hn1 = {h1, h2, h3, ..., hb} | ξ(hj , n1) ≥

rn1(t), 1 ≤ j ≤ b, where ξ() computes the inverse of the Euclidean distance between two

nodes. The node hi with the maximum utility ηmax emerges as the winner hop node

among all the participating physical nodes. The utility of node hi at time instant t is

dependent on the following factors.

• Residual Energy: The utility ηhi
(t) of hi at t is dependent on its residual energy

level, Qhi
(t), which expressed as,

Qhi
(t) =

Ecurhi

Einithi

(5.1)

where Einithi
and Ecurhi

are the initial and current energy level of hi, respectively.

• Proximity to the BS: ηhi
(t) is dependent on the inverse of the Euclidean distance

ξ(hi, BS) between node hi and BS.

ξ(hi, BS) =
(√

(BSxi − hxi)2 + (BSxi − hyi)2
)−1

(5.2)

hxi , hyi , BSxi , and BSyi being the abscissa and ordinate of hi, and the BS, re-

spectively.

1It is to be noted that to ensure fault tolerance and efficiency, in practice, the system model may
support multiple BSs. However, for the sake of simplicity and understandability, a single BS is considered
in this work.

71

5. Dynamic and Optimal Pricing Scheme for Se-aaS

• Received Signal Strength: The Received Signal Strength of hi, RSShi
, is also one

of the factors affecting its utility at time instant t. Thus,

RSShi
(t) = ψhi

P trhi
(t)

ξ(hi, n1)a (5.3)

where P trhi
is the transmitted power, ψhi

is the constant that takes into account all

the other factors affecting RSS such as the antenna gain and antenna height, and

a denotes the propagation constant [121]. In our problem scenario, a = 2.

• State Transition Overhead: Node hi exists in either of the three states —active

(S0
hi

), passive (S1
hi

), and sleep (S2
hi

). For the data transmission, hi needs to exist in

the active state S0
hi
. The state transition overhead in terms of energy dissipation

while switching from S1
hi

or S2
hi

to S0
hi

is denoted by, Ppq, p = {S0
hi
, S1

hi
, S2

hi
}, q =

{S0
hi
}. Quite intuitively, PS1

hi
S0

hi

� PS2
hi
S0

hi

. However, when hi remains in the

active state, there is ideally no overhead. It is assumed that PS0
hi
S0

hi

→ 0.

Definition 11. The utility ηhi
(t) of a hop node hi, ∀i = {1, 2, 3, ..., b}, at time instant

t, is a function of its residual energy Qhi
(t), its Received Signal Strength RSShi

(t), its

proximity to the BS ξ(hi, BS), and its state transition overhead Ppq. ηhi
(t) is expressed

as,

ηhi
(t) =

(
Qhi

(t) + g × RSShi
(t)ξ(hi, BS)
Ppq

)

g being a normalization factor with the same unit as that of ξ.

Having computed the utility of every nominated hop node, the node (ni) with the

maximum utility emerges as the winner hop node. Thus, without the loss of generality

it can be inferred,

ni = max∀hk∈Hni−1
ηhk

(t) (5.4)

72

5.3. System Model

5.3.2.2 Context-aware pricing

Having decided the next hop node, a context-aware pricing scheme is now proposed.

Initially, the expected price to be charged by the sensor-owner of the source sensor node

o(n1), which is denoted by pto(n1), is determined. The context of the data is examined

in terms of few parameters described below.

Definition 12. Transmission confidence of the data between a pair of nodes < a, b >

at time t, fa,b(t), is expressed in the form of profit/loss factor based on the difference of

the raw sensed data between the sender and the receiver nodes [122].

fa,b(t) =


1
N fa,b(t− 1)e(ρδ)(t), ρ = |Da −Db| < ρth

1
N fa,b(t− 1)e−(ρδ)(t), otherwise

(5.5)

where N is a factor for normalization, ρ is the absolute deviation of the transmitted data

Da from the received data Db, and δ is the profit/loss factor.

Definition 13. The temporal relevance of the data T at time t is defined as the tolerable

time interval, beyond which the data is assumed to be insignificant. Thus,

T(t) = td − t′

tr − t′
, 0 ≤ tr − td ≤ k (5.6)

where td, t′, and tr are the time instant of transmitting data packet, time instant of

detecting an event at ni, and the time instant of receiving the data at ni+1, respectively.

If tr − td exceeds k, T is considered to be negligible, i.e., T ∼ 0.

Motivated by the general design for the metric QoI [123], the QoI of node ni at time

t is modeled as, Qni = ωniQni−1 + ηni , Qn1 = 1, where ωni is the discounting factor at

time t, which is expressed as ωni = Qnifni−1,niT/a where a normalizes the value within

73

5. Dynamic and Optimal Pricing Scheme for Se-aaS

0 to 1 and makes ωni unit less. Thus,

Qni =
ni∏
j=2

ωnjQn1 +
ni−1∑
k=2

ni∏
l=k+1

ωnl
ηnk

+ ηni (5.7)

Definition 14. The price pto(n1) charged by sensor owner of the source node o(n1), is

directly proportional to the QoI of the data of n′ at time t,

pt
o(n1) ∝ Qn′(t)⇒ pt

o(n1) = c1(t)Qn′(t) (5.8)

where c1 is a multiplicative factor that accounts for both the signal attenuation in terms

of the Nodal Signal to Noise Ratio (NSNR) [124] and the total number of transmission

attempts for the corresponding packet. Thus,

c1(t) = g
Psignal(t)
Pnoise(t)

(5.9)

where Psignal, Pnoise, and g are the power of signal and the background noise, and the

count of the transmission attempts, respectively.

Definition 15. The utility U of the end-user e is defined as the amount of data received

per virtual sensor vsi per unit time. Thus, U ∼ U(γ1, γ2).

Motivated by the works of Lam et al. [112], and Fudenberg and Tirole [125], the

strategy profile of the proposed system is illustrated as follows.

Strategy profile:

• The end-user e obtains data from a virtual sensor vsi for a time period, τ . The

end-user follows a myopic strategy: it retains a virtual sensor vsi at time t, if

(t ≤ τ) and (U ≥ pt
o(n′)) i.e., within the time period τ , the end-user accepts the

service if and only if the utility U is higher than the price to be payed by the

end-user.

74

5.3. System Model

• The sensor owner o(ni), ∀i = {2, 3, . . . , n′}, of a participating hop node, charges

a price p∗o(ni)(po(ni−1)) which is dependent on the price charged by the previous

sensor owner o(ni−1).

p∗o(ni)(po(ni−1)) ∈ arg max
po(ni)

[(
po(ni) − po(ni−1)

)
P

(
U ≥ mo(ni)(po(ni))

)]
(5.10)

where mo(ni)(po(ni)) is the mark up function, as defined in Definition 16. As de-

picted in Equation (5.10), a sensor-owner o(ni) strategically claims his/her price

by probabilistically determining the effective price payable (by the end-user) to

the stream of sensor-owners o(ni) to o(n′). For the strategy to be effective,

it also considers the probability of the end-user to be willing to pay the price,(
P
(
U ≥ mo(ni)(po(ni))

))
.

• The owner of the last hop node o(n′) charges a decreasing price sequence {po(n
′)

t }.

Definition 16. The mark-up function mo(ni)(po(ni)) of the proposed system is defined

as the price that an end-user has to pay for the stream of nodes from node n1 to ni after

the price is fixed at ni. Thus, mo(ni)(po(ni)) is expressed as,

mo(ni)(po(ni)) =


p∗o(ni)(p∗o(ni−1(...(p∗o(n2)(po(n1)))...)),

i = {2, ..., n′ − 1}

po(n1), i = 1

(5.11)

With the assumption that γ1, γ2 are known, the optimal price p∗o(n
′) ∈ [γ1, γ2]

charged by o(n′), is determined as,

(
po(n

′) − po(n′−1)
)
P

(
U ≥ mo(n′)(po(n′))

)
=
(
po(n

′) − po(n′−1)
)(

γ2 − po(n
′)

γ2 − γ1

)
(5.12)

On differentiating Equation (5.12) w.r.t po(n′) and equating to zero, the optimal price

75

5. Dynamic and Optimal Pricing Scheme for Se-aaS

p∗o(ni) =


(2n′−i)γ1 − (2n′−i − 1)γ2, if p

o(ni−1)+γ2
2 < (2n′−i)γ1 − (2n′−i − 1)γ2

po(ni−1)+γ2
2 , if p

o(ni−1)+γ2
2 ∈ [(2n′−i)γ1 − (2n′−i − 1)γ2, γ2]

γ2, otherwise
(5.14)

p∗o(n
′) is obtained as,

p∗o(n
′) =


γ1, if p

o(n′−1)+γ2
2 < γ1

po(n′−1)+γ2
2 , if p

o(n′−1)+γ2
2 ∈ [γ1, γ2]

γ2, otherwise

(5.13)

On iterating the above process, the optimal price p∗o(ni) charged by the owner, o(ni)

of any participating hop node is derived as: ∀i = {2, 3, ..., n′}, as shown in Equation

(5.14). The optimal price p∗o(n1) charged by the owner of the source sensor node o(n1)

is,

p∗o(n1) =


γ2
2 , if (2n′−1)γ1 − (2n′−1 − 1)γ2 ≤ γ2

2

(2n′−1)γ1 − (2n′−1 − 1)γ2, otherwise
(5.15)

Theorem 5.3.1. The theoretical maximum of an end-user utility, γ2 , is dependent on

the price charged by the last hop node, p∗o(n′) and the price charged by the second last

hop node, po(n′−1).

Proof. The optimal price charged by o(n′) is obtained from Equation (5.13). Thus, to

maintain the optimality in price, the utility provisioned to an end-user has an upper

bound γ2max. It is observed that, as po(n′−1)+γ2
2 ∈ [γ1, γ2], γ2 = 2p∗o(n′) − po(n′−1), and

as po(n′−1)+γ2
2 > γ1, γ2 = p∗o(n

′). Now,

γ2 = 2p∗o(n′) − po(n′−1)

= p∗o(n
′) + p∗o(n

′) − po(n′−1)

76

5.3. System Model

Since (p∗o(n′)−po(n′−1)) is the net profit of o(n′), it is expected to be a positive quantity.

Thus, it is inferred that γ2max = 2p∗o(n′) − po(n′−1). This implies,

γ2max =


2p∗o(n′) − po(n′−1),

if γ2 ∈ max
(

2γ1 − po(n
′−1), po(n

′−1)
)

p∗o(n
′), otherwise

(5.16)

This concludes the proof.

Corollary 5.3.2. The maximum utility γ2 obtained by an end-user e, at a particular

time instant, is dependent on the number of hop nodes n′.

Justification: Ideally, every o(ni), ∀i ∈ {1...n′}, makes a net positive profit. There-

fore, {p∗o(ni)} is a non-decreasing sequence. Hence as n′ increases, p∗o(n′) also increases.

This justifies the statement.

Proposition 5.3.3. For a single hop case, i.e., when the source node n1 behaves as the

only hop node, the maximum utility that can be provisioned is twice the price charged by

o(n1).

Proof. For a single hop case, n1 directly connects to BS, i.e., n′ = 1. From Equation

(5.15), it is inferred that, as γ2 ≥ 2γ1, γ2 = 2p∗o(n1), and when γ2 < 2γ1, γ2 < 2p∗o(n1).

Thus, without the loss of generality it can be said that, γ2max ≤ 2p∗o(n1). This completes

the proof.

5.3.3 pI: Pricing attributed to Infrastructure

In terms of the usage of infrastructure within the sensor-cloud platform, whenever end-

user e requests the CSP for some data to be fed into his/her application, the CSP creates

a VM dedicated to e, VMe. The number of virtual sensors within VMe that are created

and deleted depends upon the requirement of e, and, thereby, being time dependent,

77

5. Dynamic and Optimal Pricing Scheme for Se-aaS

and is denoted by k(t). Based on the demand λevsi
(t) of e for virtual sensor vsi, the

price charged by the CSP is pvsi(t) at time instant t. CVMe(t) is the cost of creating

VMe within the cloud platform, inclusive of the initial cost for creating the instance of

VMe, BVMe , and the cost for maintaining it over time. The maintenance cost of a VMe

is charged from the time it is built (tbuilt) till it is discarded. The maintenance cost of

a VMe per unit time, MVMe , comprises of the cost for creating its component virtual

sensors vsi ∈ V Se, in addition to the maintenance cost per unit time, for each of them.

Thus,

CVMe(t) = BVMe(t) +MVMe(t− tbuilt) (5.17)

MVMe(t− tbuilt) =
k(t)∑
i=1

(
Bvsi +Mvsi(t− t0i)

)
(5.18)

where t0i represents the time instant at which the virtual sensor vsi is created. The final

equation of the cost incurred by the CSP for the creation and maintenance of VMe and

its corresponding virtual sensors, at time t is,

CVMe(t) = BVMe(t) +
k(t)∑
i=1

Bvsi +
k(t)∑
i=1

Mvsi(t− t0i) (5.19)

A virtual sensor comprises of a set of homogeneous (with respect to sensing hardware)

physical sensors serving a particular application. The creation and deletion of the virtual

sensors is completely dependent on the end-user’s requirement. However, if a virtual

sensor is unused for a long time duration, the maintenance cost exceeds the cost of

creating the same. In such cases, it is preferred to delete a virtual sensor and create it

when required.

Proposition 5.3.4. The optimum time interval 4t between two consecutive demands

for a particular virtual sensor vsi is
Bvsi
Mvsi

.

Proof. We assume that the last time instant at which the maintenance cost equals the

78

5.3. System Model

cost of creation of vsi is tmax and t represents the current time instant. Thus,Mvsi(tmax−

t) = Bvsi . Thus, for all t′ > tmax,

Mvsi(tmax − t′) > Bvsi ⇒ tmax = Bvsi

Mvsi

+ t (5.20)

Thus, 4t = tmax − t = Bvsi

Mvsi

(5.21)

Corollary 5.3.5. The instantaneous cost incurred at the cloud end, for a virtual sensor

vsi, at time t′, (Cinstvsi
(t′)), is dependent on the time instant when the last demand was

placed.

Proof. We assume that the last demand for vsi was placed at tlast. From Proposition

5.3.4, it follows that, at current time instant t′, if t′− tlast < 4t, then the instantaneous

cost for vsi will be only due to maintenance at t′. Otherwise, it includes both the creation

and maintenance cost. Thus,

Cinstvsi
(t′) =

 Mvsi , t′ − tlast <
Bvsi
Mvsi

Bvsi +Mvsi , otherwise
(5.22)

This completes the proof.

Definition 17. The net profit of the CSP at time t, r(t), is defined as the difference of

the total price charged from the end-user and the sum of the cost incurred in creating and

maintaining the VM for a particular end-user e and the overall price charged through

pH for e (po(n
′)

e (t)). Thus, r(t) is expressed as,

r(t) =
(k(t)∑
i=1

λevsi
(t)pvsi(t)

)
+ pVMe − CVMe(t)− po(n′)e (t) (5.23)

79

5. Dynamic and Optimal Pricing Scheme for Se-aaS

where the price charged for each virtual sensor is a function of the rate of change of

demand for each vsi(t).

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

Demand

Pr
ic

e

λ (µ=10)
f(λ)
f′(λ)
f′′ (λ)
f′′′ (λ)

(a) λvsi ∼ P (50, 10)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

Demand

Pr
ic

e

λ (µ = 25)
f(λ)
f′(λ)
f′′ (λ)
f′′′ (λ)

(b) λvsi ∼ P (50, 25)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

Demand

Pr
ic

e

λ (µ = 35)
f(λ)
f′(λ)
f′′ (λ)
f′′′ (λ)

(c) λvsi ∼ P (50, 35)

Figure 5.2: Analysis of price-demand relationship

Theorem 5.3.6. The price charged for a virtual sensor, vsi, is based on the memory of

80

5.3. System Model

demand: the price pvsi(t) charged at a particular time instant t, is based on the previous

demands λvsi(t − 1), and the jth order of rate of change of demands over time, djλvsi
dtj

,

1 ≤ j ≤ n, n ∈ N.

Proof. As in Corollary 5.3.5, the instantaneous cost of the virtual sensor depends upon

the time instant at which the demand was last placed. Thus, as the rate of demand

increases within 4t, the cost decreases accordingly. Therefore, for a vsi,

Cvsi(t) = f

(
λevsi

,
dλevsi

dt
, . . . ,

dn−1λevsi

dtn−1 ,
dnλevsi

dtn

)
(5.24)

From Equation (5.23), it can be seen that an increase in the cost, increases the price

of vsi, for the CSP to make positive net profit, i.e., price and cost are linearly connected.

Thus,

pvsi(t) = f

(
λevsi

,
dλevsi

dt
, . . . ,

dn−1λevsi

dtn−1 ,
dnλevsi

dtn

)
(5.25)

Figure 5.2 shows the relationship between demand and price. It has been assumed that

in Figures 5.2(a), 5.2(b), and 5.2(c), demand follows a Poisson distribution (n = 50)

with varying mean (µ = 10, µ = 25, µ = 35), respectively. It can be observed that

the change in price is significant with the first order derivative of the demand. However,

there is not much effective change reflected from the higher order derivatives of the

demand. Therefore, for the sake of simplicity, in this work, the following Equation holds

true:

pvsi(t) = α
dλevsi

(t)
dt

+ βλevsi
(t) (5.26)

where the parameters α, β are assumed to be system-modeled coefficients. This com-

pletes the proof.

At a particular time t′, R represents the total number of requests made by all the

end-users ∈ E.

81

5. Dynamic and Optimal Pricing Scheme for Se-aaS

R =
l∑

j=1

k(t′)∑
i=1

λ
ej
vsi ,∀ej ∈ E,∀vsi ∈ V Sej (5.27)

Since the service rate of CSP is w, the expected time to finish serving a request, inclusive

of the waiting time and the time being served is, 1
w−R [117,126].

Therefore, the time spent for waiting is 1
w−R −

1
w [117]. Thus, the expected finishing

time for e is,

1
w −R

− 1
w

+

k(t′)∑
i=1

λevsi

w
= R

w(w −R) +

k(t′)∑
i=1

λevsi

w
(5.28)

Definition 18. The user satisfaction ue(t) for a particular end-user e at any time

instant t, is a function of the total demand made by e for all the virtual sensors within

VMe, the total cost incurred at the sensor-cloud end for serving the demand, and the

total price charged by the CSP.

ue(t) =
k(t)∑
i=1

λevsi
− c
[

R

w(w −R) +

k(t)∑
i=1

λevsi

w

]
− c′

[k(t)∑
i=1

pvsi(t) + pVMe

]
(5.29)

where c′ is the constant incorporated to make the term
k(t)∑
i=1

pvsi(t) + pVMe unitless.

The main objective of our work is to maximize the total profit of the CSP over time

T , while considering the user satisfaction, i.e.,

F(T) =
T∑
t=0

r(t) (5.30)

subjected to, λevsi
≥ 0, ∀i = 1, 2, 3, . . . , k(t) (5.31)

k(t)∑
i=1

λevsi
− c
[

R

w(w −R) +

k(t)∑
i=1

λevsi

w

]
− c′

[k(t)∑
i=1

pvsi(t) + pVMe

]
> veopt (5.32)

82

5.3. System Model

where vopt is the threshold value, below which the values of ue(t) are not allowed. From

the Equation (5.30), it is observed that r(t) can be maximized for every time instant t.

Accordingly, F(T) can be maximized. r(t) is simplified as,

r(t) =
k(t)∑
i=1

(
λevsi

(t)pvsi(t)
)

+ pVMe − CVMe(t)− po(n′)e (t)

= F

(
λvs1 , λvs2 , . . . , λvsk(t) , t01, t02, . . . , t0k(t)

)

The aim is to maximize F using the approach of Lagrange Multiplier. Thus,

∇F
(
λvs1 , λvs2 , . . . , λvsk(t) , t01, t02, . . . , t0k(t)

)
= θ∇u

(
λvs1 , λvs2 , . . . , λvsk(t)

)
(5.33)

where θ is the Lagrangian multiplier. Therefore,

∂F

∂λevsi

= α
dλevsi

dt
+ βλevsi

+ λevsi

(
α

d

dλevsi

dλevsi

dt
+ β

)
(5.34)

∂ue
∂λevsi

= 1 − c

(
w2 − 2wR
w2(w −R)2 + 1

w

)
−
[
α
dλevsi

dt
+ βλevsi

+ λevsi

(
α

d

dλevsi

dλevsi

dt
+ β

)]
(5.35)

Using Equations (5.33) through (5.35), the following is obtained:

α
dλevsi

dt
+ βλevsi

+ λevsi

(
α

d

dλevsi

dλevsi

dt
+ β

)
= θ

[
1− c

(
w2 − 2wR
w2(w −R)2 + 1

w

)
−
(
α
dλevsi

dt
+ βλevsi

+ λevsi

(
α

d

dλevsi

dλevsi

dt
+ β

))]
(5.36)

At a particular time instant t′, dλ
e
vsi
dt′ = 0. Assuming

α
dλevsi

dt
+ βλevsi

+ λevsi

(
α

d

dλevsi

dλevsi

dt
+ β

)
= K (5.37)

83

5. Dynamic and Optimal Pricing Scheme for Se-aaS

Therefore, K = 2βλevsi
. Using K and Equation (5.36), it is obtained:

θ =
2βλevsi

1− c
(

w2−2wR
w2(w−R)2 + 1

w

)
− 2βλevsi

(5.38)

Therefore, after the value of θ is known, the values of F(t) and r(t) can be successfully

evaluated.

5.4 Experimental Results

In this Section, the results of experimentation are presented and analyzed. Followed

by this, the complexity analysis of both pH and pI are provided. The generic test-bed

information for pH and pI is provided in Table 6.2. Although this work is one of the

first attempts to design a pricing scheme for sensor-cloud, some of the hardware pricing

solutions that are found similar (but not exact), are discussed in Subsection A. The

experimentation setup for pH is shown in Table 5.2. Some comparative analysis of the

proposed solutions with the benchmark approaches are also performed.

Table 5.1: Testbed information for pH and pI

Parameters Values
Processor Intel(R) Core(TM) i5-2400 CPU @ 3.10 GHz
RAM 4GB, DDR3
Disk space 320 GB
Operating system Ubuntu 14.04 LTS
Application software MATLAB R2013a

5.4.1 Explanation of Parameters

The parameters used for this work have been selected on the basis of prior related

works [104–106]. The values of these parameters are set as per the related works in this

domain that are most cited [107–111].

84

5.4. Experimental Results

Table 5.2: Experimentation setup for pH

Parameters Values
Deployment Area 500 m × 500 m
Deployment Uniform, random
Number of nodes 500
Communication range [100, 200] m
Transmission energy 7 nJ/bit
Computation energy 5 nJ/sec
Sensing energy 6 nJ/sec
Number of end-users 10
Average user utility 10000
Percentage of confidence 95 %

5.4.2 Analysis of pH

Initially, the proposed pH algorithm is compared with few identified benchmark solution

approaches. Followed by this, the performance of pH is also evaluated separately. The

performance metrics that are considered for comparison are:

• Mean residual energy

• Mean proximity with BS

• Mean RSS

• Mean state transition overhead

• Cumulative energy consumption

• Packet delivery rate

The first four are already defined in Section 5.3. The simulation metric for cumulative

energy consumption is discussed later in this subsection, with the corresponding results.

The packet delivery rate is defined below.

85

5. Dynamic and Optimal Pricing Scheme for Se-aaS

Definition 19. Packet delivery rate is defined as the percentage of the total packets

successfully delivered from any source sensor node to the BS.

5.4.2.1 Benchmark Solutions

In order to find the solution for the proposed model, the following existing benchmark

solutions are used as the basis for comparison,

• The Packet Purse Model (PPM) [46]

• Sprite: A Simple, Cheat-Proof, Credit-Based System for Mobile Ad-Hoc Networks

[41]

In PPM [46], the sender bears the total cost of transmitting sensed data from the

source sensor node to the BS. This cost is calculated in terms of the virtual currency

called nuglets. If the amount is under estimated by the sender, then the packet is

dropped mid-way, and if it is over estimated, then the sender suffers a loss of nuglets.

Moreover, this model requires a tamper- proof hardware established at each node for

proper deduction and addition of nuglets. Also, the size of the Packet Purse Header

increases than the actual packet size resulting in slow inefficient packet transmission.

In Sprite [41], a central authority, known as Credit Clearance Service (CCS), is

implemented. It evaluates the amount of nuglet to be charged or credited to each node

involved in the packet transmission, based on the submitted receipts of a message. For

message authentication, the sender transfers a signed message to the next immediate

hop node, which accepts the message only after proper verification of the signature of

the sender nodes. The digital signature and verification procedure involves a significant

processing overhead. Moreover, the CPU processing time exceeds an acceptable limit if

any node attempts to send huge number of messages. The storage and the bandwidth

requirement increases due to the addition of the authentication header with each message

packet.

86

5.4. Experimental Results

Table 5.3: Comparative study of pH with PPM and Sprite

Mean Residual
energy (in %)

Mean
Proximity
with BS
(in metre)

Mean RSS
(in units)

Mean
state

transition
overhead
(in units)

pH 72.15 203.91 36.6 1.05

PPM,
Sprite

37.33 223.67 35.9 1.93

In pH, the selection of the next-hop node is evaluated using Equation (5.4), whereas

in PPM [46] and Sprite [41], the standard selection of next hop node is based on simple

Dynamic Source Routing (DSR) [127, 128] protocol, in which the physical sensor node

closest to the source sensor node is expected to emerge as the next hop node under ideal

channel conditions. The experiment is repeated 50 times and the mean of several node

parameters is compared for both the approaches, and is shown in Table 5.3.

From Table 5.3, it is evident that the pH selects a better node, compared to PPM or

Sprite, in terms of the mean residual energy, mean proximity with the BS, mean RSS,

and mean state transition overhead. As the hop selection algorithm in DSR does not

consider the other node parameters, e.g., energy level of a node, RSS intensity, and state

transition overhead, the hop nodes in PPM, and Sprite are likely to have poor residual

energy, or a low RSS intensity. pH outperforms the other approaches in this regard,

thereby choosing the nodes with the maximum utility.

Figure 5.3(a) illustrates the cumulative energy consumption of the 10 end-users with

the increase in the number of hop nodes. For every end-user, any source sensor node is

subjected to identical sensing phenomenon for pH, PPM, and Sprite. Hence, the perfor-

mance comparison is significant in terms of energy consumption due to transmission, and

computation, only. As shown in Figure 5.3(a), PPM incurs the maximum computation

due to repeated estimation of nuglets for every round of transmission. In Sprite, the node

87

5. Dynamic and Optimal Pricing Scheme for Se-aaS

5 10 15 20
0

100

200

300

400

500

600

700

800

900

1000

Number of hop nodes

C
um

ul
at

iv
e

en
er

gy
 c

on
su

m
pt

io
n

(n
J)

Computation (pH)
Computation (PPM)
Computation (Sprite)
Transmission (pH)
Transmission (PPM)
Transmission (Sprite)
Total (pH)
Total (PPM)
Total (Sprite)

(a) Cumulative energy consumption

 80

 85

 90

 95

 100

100 200 300 400 500

Pa
ck

et
 d

el
iv

er
y

ra
te

 (

in
 %

)

Number of nodes

pH PPM Sprite

(b) Packet delivery rate

Figure 5.3: Comparative study of performance in terms of network parameters

maintains a receipt after every transmission. The computation overhead is less, and is

mainly because of the processing and generation of the receipt. Unlike PPM, and Sprite,

the energy consumption due to computation in pH is primarily handled at the cloud-

end. The computational parameters are periodically fed to the sensor-cloud end through

control packets (as per the assumptions of the model). Thus, the energy consumption

due to computation within the physical sensor nodes is the least in pH. As observed in

Figure 5.3(a), Sprite leads in terms of the energy expenditure due to transmission. This

is because Sprite periodically communicates with the CCS, sending packets containing

88

5.4. Experimental Results

the receipts of the currency to be obtained by every physical node. For both PPM, and

pH, the energy expended due to transmission is significantly low. However, in PPM,

retransmission of packet is required sometimes because of under-estimation of nuglets,

thereby incurring an additional energy overhead. The overall effect is indicated by the

line-plots for the total energy expenditure.

Figure 5.3(b) compares pH, PPM, and Sprite in terms of packet delivery rate. For

10 end-users, n = {100, 200, 300, 400, 500} number of nodes, every node is allowed to

transmit data to the BS, under identical channel conditions using pH, PPM, and Sprite.

PPM estimates the nuglets before start of packet transmission. However, sometimes due

to underestimation of the nuglets, the packets are dropped midway. On the other hand,

Sprite, periodically transmits the receipt of the messages from each node to the CCS,

thereby overloading the network, and reducing the packet delivery rate. However, for

pH, pricing does not affect the network load at all. The prices charged are transmitted

along with the data packets to the cloud-end. The computation, and the monetary

transactions are handled outside the network, which increases the chance of the packet

delivery rate. Figure 5.3(b) depicts the variation of the packet delivery rate with the

increase in the number of nodes. For every iteration, the experiment is repeated for 50

times and the data plot is shown within a 95% Confidence Interval (CI).

The price charged at various time instants by different sensor owners for a single

end-user is also shown. Figure 5.4 highlights the sequence of the price charged and the

point at which the optimality is reached. Figure 5.4(a) demonstrates a 5-hop scenario

(n = 5) involving 5 different sensor owners, where o(n1) is the owner of the source sensor

node. As indicated in the figure, o(ni) initially charges a price, based on which the price

charged by o(ni+1) depends. The price charged at t = 1 increases with time. However,

it does not exceed the equivalent user utility, that has been assumed to be 10000. Thus,

the tendency is to reach the user-utility as close as possible, but not exceed it. For the

sake of simulation, a new metric is defined below.

89

5. Dynamic and Optimal Pricing Scheme for Se-aaS

1 2 3 4 5
5000

6000

7000

8000

9000

10000

Sensor owners

Pr
ic

e
ch

ar
ge

d
(i

n
un

its
)

t = 1
t = 2
t = 3
t = 4
t = 5

p
t
o(n

5
)

p
t
o(n

4
)

p
t
o(n

3
)

p
t
o(n

2
)

p
t
o(n

1
)

(a) n = 5, t = 5

1 2 3 4 5
5000

6000

7000

8000

9000

10000

11000

Sensor owners
Pr

ic
e

ch
ar

ge
d

(i
n

un
its

)

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

p
t
o(n

5
)

p
t
o(n

3
)

p
t
o(n

2
)

p
t
o(n

1
)

p
t
o(n

4
)

(b) n = 5, t = 8

2 4 6 8 10
5000

6000

7000

8000

9000

10000

11000

Sensor owners

Pr
ic

e
ch

ar
ge

d
(i

n
un

its
)

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8p

t
o(n

1
)

p
t
o(n

2
)

p
t
o(n

3
)
p

t
o(n

4
) p

t
o(n

6
)

p
t
o(n

5
) p

t
o(n

7
) p

t
o(n

9
)

p
t
o(n

8
) p

t
o(n

10
)

(c) n = 10, t = 8

1 2
5000

6000

7000

8000

9000

10000

11000

Sensor owners

Pr
ic

e
ch

ar
ge

d
(i

n
un

its
)

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

p
t
o(n

2
)

p
t
o(n

1
)

(d) n = 2, t = 8

Figure 5.4: Analysis of price charged (due to hardware) with time

Definition 20. Deviation from the user utility (d) is a metric in the scale of 0 to 1

that indicates the degree of convergence of the price charged by the sensor owners to the

utility. It is computed as,

d = 1− U− po(i)

γ2 − γ1
(5.39)

Practically, d → 1, but d 6= 1. Corresponding to Figure 5.4(a), Figure 5.5(a) shows

the tendency of convergence of the price charged with the user utility. In Figure 5.4(b),

the experiment was done for n = 5, t = 8. At t = 8, it is found that o(n1) exceeds the

user-utility. From this, it is concluded that the price charged by the sensor owners attains

optimality at t = 7, for this simulation setup. Figure 5.5(b) indicates the asymmetry

90

5.4. Experimental Results

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Sensor owners

D
ev

ia
tio

n
fr

om
 U

se
r

U
til

ity

t = 1
t = 2
t = 3
t = 4
t = 5

(a) n = 5, t = 5

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Sensor owners

D
ev

ia
tio

n
fr

om
 U

se
r

U
til

ity

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

(b) n = 5, t = 8

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sensor owners

D
ev

ia
tio

n
fr

om
 U

se
r

U
til

ity

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

(c) n = 10, t = 8

1 2
0

0.2

0.4

0.6

0.8

1

Sensor owners

D
ev

ia
tio

n
fr

om
 U

se
r

U
til

ity

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

(d) n = 2, t = 8

Figure 5.5: Analysis of the tendency of the charged price to converge with the user utility

of the pattern at t = 8, as d > 1. To infer with generality, the same experiment is

performed over a different setup, where n = 10, t = 8, as shown in Fig 5.4(c). Even

with the increase in the number of hops, it is found that that equilibrium is reached at

t = 7. Figure 5.5(c) supports the equilibrium at t = 7. Figs. 5.4(d), and Figure 5.5(d)

demonstrate the same effect with a setup of n = 2, t = 8. Thus, the system attains

its equilibrium at t = 7. Hence, without the loss of generality, it can be inferred that

for a particular network setup, the system attains equilibrium after a finite period of

time tf , after which the sequence {po(ni)
t } stabilizes, i.e., ∀t ≥ tf , p

o(ni)
t+1 = p

o(ni)
t , and

p
o(ni)
t = p

o(ni)
tf

.

91

5. Dynamic and Optimal Pricing Scheme for Se-aaS

5.4.3 Analysis of pI

This subsection puts forth the performance analysis of pI. pI primarily provides the

pricing scheme for the infrastructure of virtualization. The experimentation setup for pI

is illustrated in Table 5.4.

Table 5.4: Experimentation setup for pI

Parameters Values
Building cost of VM 4 unit
Building cost of vs 3 unit
Price of VM per unit 5 unit
Price of vs per unit 4 unit
Maintenance Cost of vs per time slot 2 unit
Number of end-users [1, 10]
Number of VMs per user 1
Service rate of CSP 15 demand/sec
β 0.5

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

V
al

ue
s

End-user Id

Total demand
User satisfaction

Figure 5.6: Analysis of demand and user satisfaction

Figure 5.6 shows the demand and the user satisfaction ue(t) provided by the cloud

for 10 end-users. As per Definition 18, and also following Figure 5.6, it is evident that

the ue(t) varies with the demand λvsi . The increase in ue(t) is clearly reflected by

the increase in demand for the virtual sensors. However, if the demand is too small,

as in the case of end-user 5, the processing overhead at the sensor-cloud end increases,

92

5.4. Experimental Results

2 4 6 8 10
−200

0

200

400

600

800

1000

No. of end−users

P
ro

fit
 o

f C
S

P
 (

in
 u

ni
t)

t = 1
t = 2
t = 3
t = 4
t = 5

(a) Number of end-users vs profit of CSP

2 4 6 8 10
0

20

40

60

80

100

End−user IdP
ro

fit
, U

se
r

sa
tis

fa
ct

io
n

(in
 u

ni
t)

Users satisfaction
Price at t = 1
Price at t = 2
Price at t = 3
Price at t = 4
Price at t = 5

(b) Increment in price towards user satisfaction

Figure 5.7: Overall analysis of the profit made by the CSP

10 20 30 40 50
0

5

10

15

Time

V
al

ue
s

User satisfaction
Demand
Charged price

Figure 5.8: Analysis of the correlation of price, demand, and user satisfaction

thereby reducing the user satisfaction. Figure 5.7(a) illustrates the variation of the profit

acquired by the CSP, with time. Initially, at t = 1, the CSP runs at a loss for serving

the requests of 10 end-users, indicated by the negative y axis. Only after a period of

time, i.e., t = 2 onwards, significant profit is incurred with the increase in the number

of end-users. Figure 5.7(b) illustrates the timely increment of the price charged by the

CSP, for a fixed user satisfaction, and a fixed demand for 5 time instants. Clearly,

end-users 2 and 3 face 4 increments in the charged price, whereas the price charged

from end-users 9, and 10 are incremented only thrice. This is because, the CSP has a

93

5. Dynamic and Optimal Pricing Scheme for Se-aaS

tendency to charge a price close to ue(t), but not exceed it. This strategy ensures that

the end-users are not over-charged with time. The user satisfaction value of end-user

5 is significantly low (because of low demand and low data urgency), and hence, the

CSP does not get the opportunity to increase the charged price with time. To examine

the stability of the proposed system, the system was simulated for a longer period of

time, i.e., for 50 time units, for a single end-user, as shown in Figure 5.8. The increasing

demand λvsi of the end-user, and the corresponding satisfaction u(t) are shown. The

price charged by the CSP increases with the increase in λvsi . However, at t = 44, it can

be seen that the price remains constant, i.e., pvsi(45) = pvsi(44) = pvsi(43), although the

demand increases (λ(44), λ(45) > λ(43), and u(43) = u(44) = u(45)), mainly to prevent

the price from exceeding the user satisfaction.

5.4.3.1 Scalability Analysis

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

10000 20000 30000 40000 50000

V
al

ue
s

(i
n

un
its

)

Number of end-users

Cumulative profit
Demand

(a) Study of demand and cumulativeprofit

 10000

 20000

 30000

 40000

 50000

 60000

 10000 20000 30000 40000 50000

V
al

ue
s

(i
n

un
its

)

Number of end-users

Demand
User satisfaction

(b) Study of demand and user satisfaction

Figure 5.9: Analysis of scalability of the system

Motivated by the works of [16,17], for analysis of the system scalability, an experiment

was performed on an increased set of end-users, as shown in Figure 5.9. The experiment

involves 10, 000 to 50, 000 end-users, denoted by etot. The total demand (λtot) for the

end-users are also varied in terms of the number of virtual sensors allocated and is

computed as, λtot =
etot∑
j=1

nej∑
i=1

λ
ej
vsi where, nej is the total number of component physical

94

5.4. Experimental Results

sensor nodes of vsi for ej . With the change in the request for the vsi, the number of the

allocated physical sensors is altered and by changing the number of allocated vsi, λ
ej
vsi is

altered for multiple end-users. As depicted in Figure 5.9(a), with the increase in λtot, the

profit of the CSP r(t) increases as per Equation (5.23). Therefore, the cumulative profit

over all the end-users also increases and is evaluated as
etot∑
j=1

r(t)ej . However, as illustrated

through Figure 5.9(b), it is observed that the average user satisfaction ue(t) is above the

threshold vopt and remains almost unchanged with the increase in demand. It is also

observed that with 10, 000 and 20, 000 end-users, the ue(t) has a mean of approximately

47, 500 and lies within the interval of [48, 900, 45, 600] with 95% confidence. However,

at larger demands, the mean user satisfaction tends to lie at a slightly wider interval

of [44, 000, 51, 000] with 95% confidence, but, the mean satisfaction stands at 47, 400.

From this it is inferred that even with the increase in larger demands for a greater and

varying number of end-users, the CSP incurs an increasing positive profit and the user

satisfaction is simultaneously maintained. This justifies the scalability of the system.

5.4.3.2 Complexity Analysis

In this subsubsection, the asymptotic computational complexity of pH, and pI are an-

alyzed to examine its real-time processing ability. The complexity of computation is

measured in terms of the simulation time required for the execution of the algorithms.

Figure 5.10(a) demonstrates the variation in the computational time with the increase

in the number of the underlying physical sensor nodes. The mean simulation time is

observed to be within the interval [0.27, 0.82] with 95% confidence. Thus, it is found

that the increase in the number of the physical sensor nodes has significantly low impact

of the computational complexity of pH.

Figure 5.10(b) depicts the computational complexity of pI. The experiment is exe-

cuted for serving the requests of a single end-user with varying demands for a varied

period of time, from 50 to 500 time instants, and the corresponding execution time is

95

5. Dynamic and Optimal Pricing Scheme for Se-aaS

calculated and analyzed to examine the computational complexity of pH. The mean

simulation time was found to lie between [0.21, 0.81] with 95% confidence. Therefore,

both pH and pI are suitable for real-time implementation.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

100 200 300 400 500 600 700 800 9001000

Si
m

ul
at

io
n

tim
e

(i
n

m
s)

Number of nodes

pH

(a) Number of physical nodes vs simulation time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

50 100 150 200 250 300 350 400 450 500

Si
m

ul
at

io
n

tim
e

(i
n

m
s)

Service time for a single end-user

pI

(b) Number of physical nodes vs simulation time

Figure 5.10: Overall analysis of the profit made by the CSP

5.5 Summary

In this Chapter, a dynamic pricing model was proposed for rendering Se-aaS. The pro-

posed pricing model was divided into two different sections – pH and pI. pH deals with

the pricing scheme for hardware with the aim to maximize the profit of several sensor

owners involved in the data transmission. It presents the pricing scheme for maximizing

the profit of the CSP, by considering the user satisfaction at different time instants.

A comparative study of the next hop selection is done for pH with PPM, and Sprite.

It is observed that pH outperforms the aforesaid models in terms of residual energy,

proximity with BS, RSS, and overhead. Moreover, pH reduces the cumulative energy

consumption, and increases the packet delivery rate. pI focuses on the pricing due to

infrastructure and takes into account the different costs incurred due to building and

maintenance of VMs and VSs within sensor-cloud. The analysis of pI shows how CSP

incurs profit and the user satisfaction is also met, simultaneously. Finally, the complex-

ity analysis of pH and pI are also performed and an analysis id performed to justify the

96

5.5. Summary

real-time processing abilities of the algorithms.

97

Chapter 6

Optimal Data Center Scheduling

for QoS Management in

Sensor-cloud

As mentioned in the previous Chapters, in sensor-cloud platforms, for every request

from a particular application, a set of physical sensors is allocated. Each set of allocated

physical nodes serving a particular application form a Virtual Sensor (VS). Intuitively,

the set of VSs serving a particular application span across multiple regions. As the data

from multiple VSs are channelized into different cloud DCs, multiple DCs which are

spread geographically across the globe may get involved in the process.

In sensor-cloud, the VSs (serving a particular application) are stored inside a single

VM, within a particular DC. Therefore, it becomes essential to migrate the data of

different VSs (temporarily stored within geographically scattered DCs) to a single VM

residing within a particular DC that would serve the application. Obviously, the need

for an application specific scheduling of a particular sensor-cloud DC is realized.

For example, as shown in Figure 6.1, it is observed that n number of VSs at different

regions serve an application. Data from the physical sensor nodes constituting a single

99

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

Figure 6.1: Different storage types in DCs

VS are transmitted to a DC for temporary storage. In real-life scenarios, the DCs have

the maximum proximity with the physical sensor nodes. However, it is required to

create a VM within a single DC to serve the application. Therefore, it is eventually

required to transmit these VSs (from the DCs enabling temporary storage) to a single

DC, in which the VM, serving the application, resides. In such a scenario, a random

selection of a DC, as also indicated by the figure, to serve an application, might be

unjust and inappropriate, as it incurs huge networking overhead from the underlying

sensor networks to the cloud platform, thereby reducing the Quality of Service (QoS). It

is imperative to optimize the performance of the application by analyzing and selecting

the DC that provisions with the maximum QoS.

6.1 Contributions of the Chapter

This Chapter focuses on the networking dimensions of sensor-cloud, which is grossly

unexplored till date. The above-mentioned problem arises from the need to select a single

100

6.2. Problem Description

DC for serving a particular application. This work focuses on a dynamic scheduling of

DCs, given a particular application, and a set of geographically scattered DCs. While

scheduling a particular DC, the QoS of the application is also taken into account.

Initially, the proposed work quantifies the QoS to be offered to an application by

sensor-cloud in terms of the migration cost within the DCs, the delivery cost to the

application from the scheduled DC, and the overall service delay of provisioning Se-aaS.

User satisfaction also accounts for the effective QoS. Finally, the process for scheduling

of DC is performed, and the QoS is also simultaneously maintained.

This Chapter addresses the problem by a collective decision making of various ge-

ographically distributed DCs. While arriving at a final solution, the work assumes the

fallible decision making ability of the DCs; thereby, orienting the proposed problem to

fit well with the real-life scenarios. The proposed solution for scheduling a DC also takes

into account the four different types of asymmetry arising due to two different states of

nature (good or bad), and two different alternatives of the DCs, while making a deci-

sion (yes or no), which is elaborately discussed in Section 6.4. This provides substantial

credibility of the solution to be applicable de facto.

6.2 Problem Description

The problem scenario considers one or more end-user applications requesting for var-

ious types of sensor data from different regions in the form of Se-aaS. In case of Se-

aaS, the end-users generally request for sensors through web templates. In return, the

sensor-cloud service provider allocates physical sensor nodes and forms virtual sensors.

Eventually, the sensed data is provisioned as a service to the end-users. It appears to

the end-users that s/he is being served with dedicated physical sensor nodes as per re-

quirement. The requests from the different applications are interpreted and the physical

sensors are allocated accordingly, as shown in Figure 6.2. The figure clearly indicates the

projection of the physical hosts within a DC and the projection of VMs within a physical

101

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

host. As mentioned in the earlier Sections, for every distinct request from the end-user,

a distinct VS is formed. As the VSs are spread across multiple regions, the data from

the VSs are temporarily stored into the closest sensor-cloud DC. A sensor-cloud DC is

essentially a cloud DC that renders Se-aaS. However, the principle of a sensor-cloud is to

serve a particular application with the data from multiple VSs residing within a single

VM [129]. Therefore, to provide Se-aaS, it is required to build a VM within a single DC.

Figure 6.2: Diagrammatic representation of the problem scenario

The goal of this work is to identify the DC within which the VM will be allocated.

Scheduling a DC essentially means the selection of a particular DC that will serve an end-

user through its VM and VSs. The VSs, that are temporarily scattered within different

DCs, are migrated to the particular VM, selected for serving a particular application.

In the process of selection of the DC, the service delay of the end-user, as well as the

migration cost of the DCs are optimized, thereby ensuring that the QoS is preserved.

102

6.3. Formal Definition of the Problem

6.3 Formal Definition of the Problem

A set D of ω DCs is considered within a sensor-cloud, such that, D = D1,D2, ...,Dω,

located at regions R1, R2, ..., Rω, respectively, as shown in Figure 6.3. Table 6.1 is a

notation table that illustrates the significant functions and variables used in the pro-

posed system. An application Appi creates m different types of requests for Se-aaS.

The VSs formed are represented as, V1,V2, ...,Vm, and are stored in temporary DCs,

Dm = {D1,D2, ...,Dm}, (m ≤ ω), respectively. Temporary DCs refer to those that tem-

porarily store the data of the geographically scattered VSs. The data from these DCs are

eventually transmitted to some other final DC where the VM of the particular user will

be created. The objective of our work is to select a DC, DAppi
w , for Appi by maximizing

QoS.

Table 6.1: Table of notation

Parameters Values
D Set of DCs
R Set of regions
ω Number of DCs
di,j Distance between Di and Dj

Vi VS stored in Di

DAppi
w Winner DC for application Appi

M(Di,Dj) Migration cost from Di to Dj

L(· · ·) Latency involved in delivering a packet from Di to Dj

(l1,j , l2,j) Absolute location of Appj
(Di.x,Di.y) Location coordinates of Di

η2 Transmission rate from a DC to an end-user
δ(· · ·) Delivery cost
S(·) Service delay
Q(Appi) QoS offered to Appi
Qnet(Appi) Effective QoS offered to Appi
U(·) User dissatisfaction-delay product
λ Demand rate
P(·, ·) Payoff for approving or disapproving DCs
Dnom Set of nominated DCs
Xij Decision outcome of Di for Dj

W System events
Υi Decision making ability of Di

JDi
Decision profile of Di

To ensure QoS, initially, a metric of QoS is designed for a particular application. The

103

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

Figure 6.3: Network model of the problem scenario

QoS of Se-aaS is designed by considering several related factors, as described below.

Definition 21. The migration cost of sensor data from DC Di to DC Dj for transmitting

p packets is denoted by M(Di,Dj), and is defined in terms of the latency L involved in

delivering a packet from Di to Dj. The function M(·, ·) is expressed as:

M(Di,Dj) = L, (6.1)

where,

L(Di,Dj , p) = p× P × d(i, j)/η1. (6.2)

The function L(Di,Dj , p) is the latency involved in migrating p packets, (each of size P

byte), from Di to Dj. The variable η1 is the migration latency of unit byte meter per

second.

104

6.3. Formal Definition of the Problem

Definition 22. The delivery cost of p packets from Di located at (Di.x,Di.y) to an

application Appj at absolute location (l1,j , l2,j) is denoted as δ(Di.x,Di.y, l1,j , l2,j), and

is expressed as:

δ(Di.x,Di.y, l1,j , l2,j) =
(√

(Di.x− l1,j)2 + (Di.y − l2,j)2
)
/η2, (6.3)

where η2 is the propagation speed in meter per second through the link connecting a DC

to an end-user. Therefore, δ is finally expressed in second.

Definition 23. The service delay of Appj, S(Appj), is the summation of its migration

cost and the delivery cost. It is defined as:

S(Appj) =
m∑
i=1

M(Di,Ds) + δ(Ds.x,Ds.y, l1,j , l2,j), (6.4)

where the data of the VSs are migrated to Ds from multiple DCs, {Di}, 1 ≤ i ≤ m.

Now, the QoS offered (in byte per second) for transmission of p packets to an ap-

plication is defined to be proportional to the costs due to migration, and data delivery.

Therefore, the QoS offered to Appj by a sensor-cloud is given as:

Q(Appj) = pP[
m∑
i=1

M(Di,Ds) + δ(Ds.x,Ds.y, l1,j , l2,j)
] . (6.5)

However, the above metric of QoS does not consider user satisfaction into account.

Therefore, Q is modified as Qnet, as described below.

Definition 24. The user dissatisfaction-delay product, U(Vk), of obtaining data from

each Vk takes into account the approximate time for processing the data of Vk and is

defined as the product of the mean service delay in provisioning data from Vk and the

corresponding demand rate λk. It is expressed as:

105

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

U(Vk) = λk ×
S(Appj)
m∑
i=1

λk

, (6.6)

where S(Appj)
m∑

i=1
λk

accounts for the service delay of Appj for Vk.

Consequently, p packets are transmitted in an overall time of
m∑
i=1

M(Di,Ds) +δ(Ds, x,Ds.y,

l1,i, l2,i) +
m∑
i=1

U(Vk).

Definition 25. The effective QoS of application Appj served by Vk is mathematically

expressed as:

Qnet(Appj) = pP

S(Appj) + U(Vk)

= pP
m∑
i=1

M(Di,Ds) + δ(Ds.x,Ds.y, l1,i, l2,i) +
m∑
i=1

(
λk ×

S(Appj)
m∑

i=1
λk

) . (6.7)

Therefore, the final objective function of our work is stated as:

f : Dm → D,D = {Di}, 1 ≤ i ≤ m ≤ d, (6.8)

which maps a set of DCs to a single Dw and Dm is the set of all the m DCs as denoted

previously. The function f maximizes the effective QoS, Qnet, of an application. There-

fore, for a particular application Appj , f belongs to the solution set of the maximization

function:

arg max
(
Qnet(Appj)

)
, (6.9)

where Qnet(Appj) is obtained from Definition 25. Having obtained the formal objective

of our work in Equation (6.8) and Equation (6.42), the approach towards achieving the

106

6.4. System Model

solution is propounded in Section 6.4.

It is to be noted here that, the problem definition of the proposed work considers all

applications of sensor-cloud, i.e., it targets all sensor-based applications (e.g., environ-

mental monitoring, surveillance applications, multimedia applications, and so on). As

different applications possess different demands (especially in terms of sensor hardware

and configurations), sensor-cloud manages the inter-operability and compatibility issues

which have been already discussed in Chapter 3.

6.4 System Model

Motivated by the Optimal Decision Rule, as illustrated in [130], the “general pairwise

choice framework” is considered to be implemented over the cloud network.

6.4.1 Optimal Decision Rule

The optimal group decision-making considers the fallibility in human nature within a

fixed-sized committee. Such rules are applicable for selection of investment projects

in economic organizations, for design of reliable systems, and for decision making in

other political or legal applications. The general pairwise choice framework of Optimal

Decision Rule takes into account the four possible types of asymmetry. For example,

in a n-member committee of an organization, a decision making is required for accept-

ing/rejecting a good/bad project. Hence, the decision of the committee has four potential

alternatives. The Optimal Decision Rule focuses to combine the individual opinions (as-

suming the fallibility of humans) and generate the rule that maximizes the payoff of the

organization in terms of the profit obtained. In this work, the Optimal Decision Rule is

analogously used. The rationale of the analogy is illustrated below.

107

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

6.4.2 Proposed Model

Each DC of the set DAppi ⊆ D (DAppi = {Di}, 1 ≤ i ≤ m), involved in temporary

storage and processing of m VSs participate in a decision rule to elect a particular DC

from a nominated set of DCs, Dnom, to serve Appi. As per the Optimal Decision Rule,

two possible states of nature are assumed for every nominated DC – good (1) and bad

(−1). The payoff associated with the approval of a good DC and the disapproval of a

bad DC is denoted by P(1 : 1) and P(−1 : −1), respectively. As the model assumes

four types of asymmetry, while making a pairwise choice, the payoffs associated with

the approval of a bad DC and the disapproval of a good DC are also considered, and

expressed as, P(1 : −1) and P(−1 : 1), respectively.

6.4.2.1 Assumptions of the model

• Every DC, Di ∈ DAppi , is heterogeneous in terms of its decision making ability.

• Each DC, Di ∈ DAppi , possesses imperfect decision making ability.

• In the context of pairwise choice, four types of asymmetry are possible.

• The decision of DAppi and the individual DCs have a binary interpretation.

• The likelihood of a nominated DC being good is a time variant, apriori probability

(αt), αo = 1/2.

• The load capacity of a DC is known to the other DCs of set D.

To form Dnom, the mean distance of each data centers from the location of the

user application Appi (L =< li,1, li,2 >) is initially computed, and denoted by ξAppi
avg .

Therefore,

ξAppi
avg =

ω∑
j=1

d(Dj , L)

ω
(6.10)

108

6.4. System Model

Consequently, ∀Dj ∈ D, Dj ∈ Dnom, if and only if:

d(Dj , L) ≤ ξAppi
avg (6.11)

Xij is the decision outcome of Di for Dj . Now, Xij = {1,−1} at a particular time,

Di ∈ DAppi ,Dj ∈ Dnom. Xij is modeled as:

Xij(t) =

 1, if
(
d(ij) ≤ diavg

)
∧
(
C(Dj) ≤ Cnomavg

)
−1, otherwise

(6.12)

where diavg is the mean distance of Di from the other DCs of the system and is expressed

as:

diavg =

ω∑
k=1

d(i, k)

ω − 1 , ∀Dk ∈ ∀D, i 6= k, (6.13)

and C(Dj) computes the current load of DC Dj given as:

C(Dj) =| Aj | (6.14)

where Aj is the current set of applications served by Dj . Therefore, ∀Dj ∈ Dnom, the

following holds true:

Cnomavg =

|Dnom|∑
j=1

C(Dj)

| Dnom |
(6.15)

Definition 26. The events of our model are:

(i) W i
1 = {1,−1}: Approving or disapproving a DC by Di

(ii) W j
2 = {1,−1}: A DC Dj appearing as a“good” or “bad”

Definition 27. The correct decision making ability of a DC Di, is denoted by Υi, and

109

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

is expressed as:

Υ+
i = P (W i

1 = 1 |W j
1 = 1) = P (1 : 1) (6.16)

Υ−i = P (W i
1 = −1 |W j

1 = −1) = P (−1 : −1) (6.17)

Definition 28. The incorrect decision making ability of a DC Di, is denoted by Υ′i, and

is expressed as:

Υ′+i = P (W i
1 = 1 |W j

1 = −1) = P (1 : −1) (6.18)

Υ′−i = P (W i
1 = −1 |W j

1 = 1) = P (−1 : 1) (6.19)

However, a bias exists, that is expressed as:

Υ+
i > Υ′+i ,Υ

−
i > Υ′−i (6.20)

The probability of approving a good DC is greater than that of a bad DC and the

probability of disapproving a bad DC is greater than that of a good DC. Having defined

the decision making abilities of every DC, a “good” and a “bad” DC are formally defined.

The “goodness” or “badness” is studied only for the elements of Dnom. The criteria for

“goodness” of a DC, Dj ∈ Dnom, for a particular application Appk, holds true if the total

number of positive decisions for Dj exceeds a pre-negotiated threshold (Xth). That is

to say that, if

m∑
i=1

(Xij + 1)!− 1, such that ∀Di ∈ DAppk
, (6.21)

where (Xij + 1)!− 1 returns 1 or 0 for Xij = 1 or -1, respectively.

Definition 29. The metric of “goodness” of Dj, G(Dj), is defined as the ratio of the

difference of the current and the maximum load to the maximum load of Dj that it

110

6.4. System Model

supports. Therefore,

G(Dj) = Cmax(Dj)− C(Dj)
Cmax(Dj)

, 0 ≤ G(Dj) ≤ 1 (6.22)

The metric of “badness” of Dj , Ḡ(Dj), is obtained as the complement of the “good-

ness” of Dj . Therefore,

Ḡ(Dj) = 1− G(Dj) = C(Dj)
Cmax(Dj)

, 0 ≤ Ḡ(Dj) ≤ 1 (6.23)

Consequently, every DC possesses a measure of “goodness”, and “badness”. Intuitively,

a DC that is exactly half loaded has identical metrics for “goodness” and “badness”. The

proportion of good DCs is:

α = Dnom
s

| Dnom |
such that, Dnom

s = {Du},G(Du) > Ḡ(Du) (6.24)

Now, the estimated probability of approving any DC irrespective of its being “good”

or “bad”, by Di is its decision making ability that is influenced, and affected by the

present workload of the DC [131, 132]. Here, P (W 1
i = 1) is estimated on the basis of

learning its ability for the last h instants. Assuming Di voted for h distinct Djs for the

last h time instants, the following holds true:

P̂ (W 1
i = 1)(t) =


1
h

h∑
j=1

(Xij + 1)!− 1, if t ≤ h

1
t

t∑
j=1

(Xij + 1)!− 1, if t > h
(6.25)

where P (W 1
i = 1) at time t is estimated as the mean decision making ability of Di over

the last h instants if t ≤ h. For t > h, the mean is computed till the current time instant.

Similarly,

111

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

P̂ (W 1
i = −1)(t) =


1
h

h∑
j=1

(1−Xij)!− 1, if t > h

1
t

t∑
j=1

(1−Xij)!− 1, if t ≤ h
(6.26)

where (1 − Xij)! − 1 returns 0 or 1 for Xij = 1 or −1, respectively. Having obtained

α, P̂ (W 1
i = 1), P̂ (W 1

i = −1), the values of Υ+
i and Υ−i are obtained using Bayesian

classification [133,134].

Υ+
i = P

(
W i

1 = 1
W2 = 1

)
=

P (W i
1 = 1)P

(
W2=1
W i

1=1

)
P (W i

1 = 1)P
(
W2=1
W i

1=1

)
+ P (W i

1 = −1)P
(

W2=1
W i

1=−1

) (6.27)

Υ−i = P

(
W i

1 = −1
W2 = −1

)
=

P (W i
1 = −1)P

(
W2=−1
W i

1=−1

)
P (W i

1 = 1)P
(
W2=−1
W i

1=1

)
+ P (W i

1 = −1)P
(
W2=−1
W i

1=−1

)(6.28)

The expressions of Υ′+i , and Υ′−i can be evaluated simply using Equation (6.27) and

Equation (6.27), respectively. Therefore,

Υ′+i = 1−Υ−i (6.29)

Υ′−i = 1−Υ+
i (6.30)

Definition 30. The decision profile of DAppi for a particular Dj, is defined as:

JDj
= {Xij},∀Di ∈ DAppi , JDj

∈ J, J = {1,−1}m (6.31)

where J is the set of all of the possible decision profiles.

112

6.4. System Model

The outcome of the aggregation rule is O : J → {1,−1}. Now, the set of decision

profiles can be partitioned into JO+
Dj

and JO−Dj
, where JO+

Dj
= {JDk

| O(JDk
) = 1}, and

JO−Dj
= {JDk

| O(JDk
) = −1}. Also, JO+

Dj

⋃
JO−Dj

= J and JO+
Dj

⋂
JO−Dj

= ∅.

A particular decision profile JDj
for Dj can be partitioned into A(JDj

) and R(JDj
),

where Xij = 1, ∀Di ∈ A(JDj
) and Xij = −1, ∀Di ∈ R(JDj

). If h(1 : 1), and h(−1 : −1)

be the respective probabilities of approving or disapproving Dj , then under decision rule

O, the following can be obtained:

h(1 : 1) =
∏

Di∈A(JDj
)
Υ+
i

∏
Di∈R(JDj

)
(1−Υ+

i) (6.32)

h(−1 : −1) =
∏

Di∈R(JDj
)
Υ−i

∏
Di∈A(JDj

)
(1−Υ−i) (6.33)

Now, given a Dj is “good” or “bad”, DAppi approves or disapproves it for a particular

decision profile JDj
, under decision rule O with probability PD(O : 1) and PD(O : −1),

respectively. Therefore,

PD(O : 1) = P (JDj
∈ JO+

Dj
: 1) (6.34)

PD(O : −1) = P (JDj
∈ JO−Dj

: −1) (6.35)

However, for Type I and Type II errors in decision making, by the DCs themselves, the

following hold true:

P eD(O : 1) = 1− PD(O : 1) (6.36)

P eD(O : −1) = 1− PD(O : −1) (6.37)

113

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

From Equation (6.32) and Equation (6.33), it can be obtained that,

PD(O : 1) =
∑

JDk
∈JO+

Dj

h(1 : 1) (6.38)

PD(O : −1) =
∑

JDk
∈JO−

Dj

h(−1 : −1) (6.39)

The goal of our problem is to maximize the expected payoff in terms of the QoS,

Qnet(Appi), for the set of all possible aggregation rules F . The payoff associated with the

approval or disapproval of a Dj is modeled proportional to the QoS of the provisioned

service to Appi. Therefore,

P(ζ : ζ) ∝ Qnet(Appi)

⇒ P(ζ : ζ) = sign(Dj)
{[m∑

i=1
M(Di,Dj) + δ(Dj , l1,i, l2,i)

]
−

m∑
i=1

(
λk ×

S(Appi)
m∑
i=1

λk

)}

(6.40)

where ζ = {1,−1} and sign(Dj) is defined as:

sign(Dj) =

 1, if G(Dj) > Ḡ(Dj)

−1, if G(Dj) ≤ Ḡ(Dj)
(6.41)

Consequently, based on the “goodness” or “badness” of a DC, a positive or negative

payoff is computed. Now, following the Optimal Decision Rule, our goal is to maximize

our expected payoff. Therefore, the goal is modified as:

arg max
f∈F

E(Appi), (6.42)

114

6.4. System Model

where E(Appi) is expressed as:

E(Appi) = α
[
P(1 : 1)PD(O : 1) + P(−1 : 1)(1− PD(O : 1))

]
+(1− α)

[
P(−1 : −1)PD(O : −1) + P(1 : −1)(1− PD(O : −1))

]
(6.43)

Now, the net effective payoff of for approval of a good DC is P(1) = P(1 : 1)−P(−1 : 1).

Similarly, the net payoff for disapproving a bad DC is P(−1) = P(−1 : −1)− P(1 : −1).

Therefore, simplifying Equation (6.43), the following is obtained:

E(Appi) = αPD(O : 1)P(1) + (1− α)PD(O : −1)P(−1) + αP(−1 : 1) + (1− α)P(1 : −1)

(6.44)

Based on the above, the net goal function can be rewritten as:

arg max
f∈F

E(Appi) = αPD(O : 1)P(1) + (1− α)PD(O : −1)P(−1)

= αP(1)
∑

JDk
∈JO+

Dj

h(1 : 1) + (1− α)P(−1)
∑

JDk
∈JO−

Dj

h(−1 : −1) (6.45)

Theorem 6.4.1. The optimal decision rule f̂ of our problem is denoted as:

f̂ = σ(ϕ+ β + ρ+ Ψ)

where

ϕ = ln α

1− α, β = ln P(1)
P(−1)

115

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

ρ =
m∑
i=1

[
ln Υ+

i

1−Υ−i
(1 +Xij)!− ln Υ−i

1−Υ+
i

(1−Xij)!
]

Ψi = ln Υ+
i (1−Υ+

i)
Υ−i (1−Υ−i)

,Ψ =
m∑
i=1

Ψi

σ(χ) =

 +1 , χ ≥ 0

−1 , otherwise

Proof. For any decision profile JDj
, f̂(JDj

) = 1 if and only if,

αP(1)h(1 : 1) > (1− α)P(−1)h(−1 : −1) (6.46)

Now, according to the Optimal Decision Rule [130] the sufficient condition for the opti-

mality of f̂ is satisfied by the partition of J, abiding by the condition:

JO+
Dj

=
{
JDj

: f̂(JDj
) = 1

}
,

=
{
JDj

, αP(1)h(1 : 1) > (1− α)P(−1)h(−1 : −1)
}
,

=
{
JDj

,
α

1− α
P(1)
P(−1)

∏
Di∈A(JDj

)
Υ+
i

∏
Di∈R(JDj

)
(1−Υ+

i) >
∏

Di∈R(JDj
)
Υ−i

∏
Di∈A(JDj

)
(1−Υ−i)

}
,

=
{
JDj

, ln α

1− α + ln P(1)
P(−1) +

∑
Di∈A(JDj

)
ln Υ+

i

1−Υ−i
>

∑
Di∈R(JDj

)
ln Υ−i

(1−Υ+
i)

}

116

6.4. System Model

The optimality condition can be further simplified as:

= ln α

1− α + ln P(1)
P(−1) +

m∑
i=1

ln Υ+
i

1−Υ−i
((Xij + 1)! + 1)

−
m∑
i=1

ln Υ−i
(1−Υ+

i)
((1−Xij)!− 1) > 0,

= ln α

1− α + ln P(1)
P(−1) +

m∑
i=1

[
ln Υ+

i

1−Υ−i
(1 +Xij)!

− ln Υ−i
1−Υ+

i

(1−Xij)!
]

+
m∑
i=1

[
ln Υ+

i

1−Υ−i
− ln Υ−i

1−Υ+
i

]
> 0,

= ln α

1− α + ln P(1)
P(−1) +

m∑
i=1

[
ln Υ+

i

1−Υ−i
(1 +Xij)!

− ln Υ−i
1−Υ+

i

(1−Xij)!
]

+
m∑
i=1

[
ln Υ+

i (1−Υ+
i)

Υ−i (1−Υ−i)

]
> 0

Finally, it is obtained that,

JO+
Dj

= {JDj
, ϕ+ β + ρ+ Ψ > 0} (6.47)

From the above, it directly follows that:

JO−Dj
= {JDj

, ϕ+ β + ρ+ Ψ ≤ 0} (6.48)

Therefore, it can be inferred that, f̂ = σ(ϕ+ β + ρ+ Ψ)

117

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

Clearly, only ρ includes the choices of the individual DCs and assigns weights to the

individual preferences. ϕ, β, and Ψ are the bias elements [130].

6.5 Analytical Results

Proposition 6.5.1. The mean weight, M(1:-1), assigned to the decision of an individual

DC, for the two states of nature, is positive.

Proof. From Theorem 6.4.1, it can be obtained that,

ρ =
m∑
i=1

[
ln Υ+

i

1−Υ−i
(1 +Xij)!− ln Υ−i

1−Υ+
i

(1−Xij)!
]
, (6.49)

where Xij = {1,−1}. Therefore, 1 ≤ (1 + Xij)!, (1 −Xij)! ≤ 2. For a particular Di, if

Xij = 1, then Equation (7.8) can be rewritten as:

ρi = ln Υ+
i

1−Υ−i
(1 +Xij)− ln Υ−i

1−Υ+
i

. (6.50)

Therefore, the weight ofXij is ln Υ+
i

1−Υ−i
. Similarly, forXij = −1, weight ofXij is ln Υ−i

1−Υ+
i

.

Therefore,

M(1 : −1) =
ln Υ+

i

1−Υ−i
+ ln Υ−i

1−Υ+
i

2

= 1
2 ln Υ+

i Υ−i
(1−Υ+

i)(1−Υ−i)

From Equation (6.20), it directly follows,

Υ+
i Υ−i > (1−Υ+

i)(1−Υ−i) i.e., M(1 : −1) > 0 (6.51)

118

6.5. Analytical Results

Proposition 6.5.2. The proposed optimal decision rule satisfies the Potential Pareto

criterion.

Proof. As per the Potential Pareto criterion (PPC) [135, 136], the winner compensates

the losers and still remains better off. It is assumed that Dw is selected for Appi through

decision rule O. Therefore, O(JDw) = 1 and Emax(Appi) = EDw(Appi):

Emax(Appi) = α

[
P(1 : 1)PDw(O : 1) + P(−1 : 1)(1− PDw(O : 1))

]
+ (1− α)

[
P(−1 : −1)PDw(O : −1) + P(1 : −1)(1− PDw(O : −1))

]

which gives us:

EDw(Appi) > EDj
(Appi),∀Dj ∈ Dnom,Dj 6= Dw (6.52)

Therefore, the compensation of any Dj , is expressed as EDj
(Appi) and the net benefit of

the winner DC is EDw(Appi)−EDj
(Appi). However, the winner DC must have a positive

benefit. Using Equation (6.52), the following holds true:

αPDw(O : 1)P(1) + (1− α)PDw(O : −1)P(−1) > αPDj
(O : 1)P(1)

+(1− α)PDj
(O : −1)P(−1)

⇒ αPDw(O : 1)P(1) + (1− α)PDw(O : −1)P(−1) + αP(−1 : 1) + (1− α)P(1 : −1)

> αPDj
(O : 1)P(1) + (1− α)PDj

(O : −1)P(−1) + αP(−1 : 1) + (1− α)P(1 : −1)

⇒ EDw(Appi) = EDj
(Appi) + c′.

119

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

Therefore, Dw compensates other DCs and also incurs a positive benefit c′; thereby,

satisfying the PPC.

Proposition 6.5.3. The proposed decision rule guarantees the unanimity criterion.

Proof. The unanimity criterion [137] is one of the most rational properties of a decision

rule. For two nominated DCs Dj1 ,Dj2 ∈ Dnom. For a particular DC, Di ∈ DAppi , Dj1

is preferred to Dj2 , if either:

(a) Xi1 = 1, and Xi2 = −1 (when Di rejects Dj2 clearly),

(b) Xi1 = Xi2 = 1 (when Dj2 is not rejected , however, Dj1 is preferred).

Case a: If for every Di ∈ DAppi , Dj1 �Di
Dj2 hold true, then it readily follows:

Q
Dj1
net (Appi) > Q

Dj2
net (Appi),∀Di ∈ DAppi (6.53)

⇒ pP
m∑
i=1

M(Di,Dj1) + δ(Dj1 , l1,i, l2,i) +
m∑
i=1

(
λk × S(Appi)

m∑
i=1

λk

)

>
pP

m∑
i=1

M(Di,Dj2) + δ(Dj12, l1,i, l2,i) +
m∑
i=1

(
λk × S(Appi)

m∑
i=1

λk

) ,

Consequently, EDj1
(Appi) > EDj2

(Appi); thereby, inferring O(JDj1
) = 1.

Case b: In this case, for every Di ∈ DAppi , it is true that Dj1 �Di
Dj2 . This implies

that:

120

6.6. Performance Evaluation

pP
m∑
i=1

M(Di,Dj1) + δ(Dj1 , l1,i, l2,i) +
m∑
i=1

(
λk × S(Appi)

m∑
i=1

λk

)

≥ pP
m∑
i=1

M(Di,Dj2) + δ(Dj12, l1,i, l2,i) +
m∑
i=1

(
λk × S(Appi)

m∑
i=1

λk

)

⇒ PDj1
(1) ≥ PDj2

(1), and PDj1
(−1) ≤ PDj2

(−1) (6.54)

⇒ EDj1
(Appi) > EDj2

(Appi)⇒ O(JDj1
) = 1 (6.55)

6.6 Performance Evaluation

This Section presents and analyzes the performance of the proposed system of scheduling

a DC for serving a particular application Appi. The details of the testbed information

are provided in Table 6.2.

Table 6.2: Testbed information

Parameters Values
Processor Intel(R) Core(TM) i5-2400 CPU @ 3.10 GHz
RAM 4GB, DDR3
Disk space 320 GB
Operating system Ubuntu 14.04 LTS
Application software MATLAB R2013a

121

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

6.6.1 Explanation of Parameters

The parameters used for this work have been selected on the basis of prior related

works [104–106]. The values of these parameters are set as per the related works in this

domain that are most cited [107–111].

6.6.2 Single Application Scenario

The experiments were initially performed for a single application that demands for 10

distinct VSs. The underlying sensor network was simulated over a uniform, random

deployment of 100 physical sensor nodes over a region of 500m ×500m for 500 simulation

seconds. The experimental setup is illustrated in Table 6.3. The experiments were

performed to select 10 temporary DCs forming DAppi . Based on the proximity of the

DCs with the application center l1 = 28 and l2 = 196, Dnom was built. The parameters of

the component DCs of Dnom are illustrated in Table 6.4. For the purpose of selection and

analysis of the optimal decision rule, the set of decision rules considered is F = {fi(·)},

such that, ∀fi() ∈ F :

fi(JDi
) = 1, fi(JDj

) = −1,∀Di,Dj ∈ Dnom,Di 6= Dj (6.56)

The performance of the rules in F are studied and analyzed, as shown in Figure 6.4.

As per Equation (6.56), every decision rule in F schedules a unique DC from the set

Dnom. Following ever fi ∈ F , the cumulative migration cost of all the DCs of DAppi

to the DCs of Dnom are analyzed over time in Figure 6.4(a). It is observed that D5

has the lowest migration cost followed by D3,D4,D1, and D2. Figure 6.4(b) depicts

the cumulative delivery cost of the DCs, in which D5 performs poorly. On the other

hand, D2 bears a low cost for delivering the packets to the application center. Figure

6.4(c) highlights the closeness of D3,D2, and D1 in terms of the overall service delay.

However, in Figure 6.4(d), the basic QoS is evaluated in which the outcome of the

122

6.6. Performance Evaluation

Table 6.3: Experimental setup for single application

Parameters Values
Sensor deployment area 500 m × 500 m
Deployment Uniform, random
Number of nodes 100
Number of VSs 10
Number of temporary DCs (| DAppi |) 10
Number of nominated DCs (| Dnom |) 5
Size of each packet 2 byte
Transmission speed 100 m/s
Distribution of demand rate Poisson

Table 6.4: Parameters of the set of nominated DCs (Dnom)

Dnom
1 Dnom

2 Dnom
3 Dnom

4 Dnom
5

Abscissa 38 224 48 273 453
Ordinate 296 464 188 56 317
Migration latency (Bps) 330.93 456.58 236.24 86.54 398.73
Delivery latency (m/s) 248.19 305.37 142.86 142.86 215.61

decision rule f3(), i.e., D3 obtains the maximum QoS. The user-dissatisfaction delay

product is evaluated and analyzed in Figure 6.4(e). It is observed that D3 provides the

minimum dissatisfaction to Appi. The effective QoS is shown in Figure 6.4(f), in which

f3() emerges as the optimum decision rule.

Now, the correctness of the decision rule f3() is analyzed in terms of the heteroge-

neous, and fallible decision making ability of DAppi and the “goodness” or “badness” of

the components of Dnom. As shown in Figure 6.5, the decision making abilities of the

DCs are studied by learning the behavior of each DC for last k instants of time. Here,

it is assumed that k = 100. In Figure 6.5(a), it is found that the mean probability of

a correct decision is 0.6615; whereas, that of a wrong decision is 0.3385. Moreover, the

mean probability of rejecting a “good” DC is 0.684; whereas, that of a “bad” DC is

0.639. The probabilities of the Type I and Type II error are depicted in Figure 6.5(b),

123

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (in second)

C
um

ul
at

iv
e

m
ig

ra
tio

n
co

st
 (

in
 m

s)

D
1
()

D
2
()

D
3
()

D
4
()

D
5
()

(a) Analysis of migration cost

100 200 300 400 500
0

200

400

600

800

1000

1200

Time (in second)
C

um
ul

at
iv

e
de

liv
er

y
co

st
 (

in
 m

s)

D
1
()

D
2
()

D
3
()

D
4
()

D
5
()

(b) Analysis of delivery cost

100 200 300 400 500
0

200

400

600

800

1000

1200

1400

Time (in second)

C
um

ul
at

iv
e

se
rv

ic
e

de
la

y
(i

n
m

s)

D
1
()

D
2
()

D
3
()

D
4
()

D
5
()

(c) Analysis of service delay

100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (in second)

C
um

ul
at

iv
e

Q
oS

 (
in

 b
yt

e/
se

co
nd

)

D
1
()

D
2
()

D
3
()

D
4
()

D
5
()

(d) Analysis of QoS

100 200 300 400 500
0

100

200

300

Time (in second)

C
um

ul
at

iv
e

di
ss

at
is

fa
ct

io
n−

de
la

y
pr

od
uc

t
(in

 m
s)

D
1
()

D
2
()

D
3
()

D
4
()

D
5
()

(e) Analysis of user dissatisfaction

100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (in second)

C
um

ul
at

iv
e

ef
fe

ct
iv

e
Q

oS
 (

in
 b

yt
e/

se
co

nd
)

D
1
()

D
2
()

D
3
()

D
4
()

D
5
()

(f) Analysis of effective QoS

Figure 6.4: Performance evaluation of the set of decision rules (F)

the mean probability being 0.316, and 0.361, respectively. With this fallible decision

making ability of DAppi , f3() eventually schedules the optimal DC.

Figure 6.6 illustrates the capacity, “goodness” and “badness” of every Dj ∈ Dnom.

124

6.6. Performance Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10C
o
rr

ec
t

d
ec

is
io

n
 a

b
il

it
y
 (

Υ
)

Temporary data center ID

Approval Disapproval

(a) Analysis of Υ+
i ,Υ

−
i

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10In
co

rr
ec

t
d

ec
is

io
n
 a

b
il

it
y

 (
Υ

’)

Temporary data center ID

Disapproval Approval

(b) Analysis of Υ
′−
i ,Υ

′+
i

Figure 6.5: Analysis of the decision making abilities of the set of the temporary DCs
(DAppi

)

 20

 40

 60

 80

 100

 120

1 2 3 4 5

N
u

m
b
er

 o
f

ap
p
li

ca
ti

o
n

s

Nominated data center ID

Capacity Goodness Badness

Figure 6.6: Analysis of the “goodness” and “badness” of the nominated data centers

For the sake of simplicity, Equation (6.22) and Equation (6.23) are simplified to obtain

the capacity C, “goodness” and “badness” of a DC, Cmax(Dj), and C(Dj) are the total

number of applications that can be supported by, and that are running withing Dj ,

respectively. Therefore:

G(Dj) = Cmax(Dj)− C(Dj), Ḡ(Dj) = Cmax(Dj)− G(Dj) (6.57)

Now, the outcome of f3() is clearer, as D3 exhibits the maximum “goodness”, and

minimum “badness”, although D2 has a higher capacity to support applications.

125

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

6.6.3 Multiple Application Scenario

Having studied the performance evaluation of the proposed system for a single applica-

tion, now the system performance is examined and discussed for a multiple applications.

The experimental setup is depicted in Table 6.5. The performance metrics that have

been considered are:

• Mean turnaround time;

• Mean throughput;

• Channel utilization; and

• Mean data center utilization.

Based on the above metrics, the system performance is evaluated by varying the number

of applications and the number of DCs, as shown in Figure 6.7.

Table 6.5: Experimental setup for multiple applications

Parameters Values
Sensor deployment area 500 m × 500 m
Number of applications {10, 20, ..., 100}
Number of temporary data centers (| DAppi |) 50
Number of nominated data centers (| Dnom |) {3, 6, 9, 12, 15 }
Intra data center bandwidth Very high, > 8 Mbps
Channel bandwidth Moderate, ≤ 8 Mbps
Size of each packet 2 byte
Transmission latency 100 m/s
Distribution of demand rate Poisson
Maximum number of demand requests 1− 10

Mean turnaround time

For the purpose of examination of the system performance in terms of the mean turnaround

time τmean for every application, the metric is defined as the mean of the turnaround

126

6.6. Performance Evaluation

20 40 60 80 100
0

200

400

600

800

1000

1200

Number of applications

M
ea

n
tu

rn
ar

ou
nd

 ti
m

e
(i

n
m

s)

Number of DCs=3

Number of DCs=6

Number of DCs=9

Number of DCs=12

Number of DCs=15

(a) Study of mean turnaround time

20 40 60 80 100
0

2000

4000

6000

8000

10000

Number of applications

M
ea

n
th

ro
ug

hp
ut

 (
in

 b
yt

e/
se

co
nd

)

Number of DCs=3
Number of DCs=6
Number of DCs=9
Number of DCs=12
Number of DCs=15

(b) Study of mean throughput

20 40 60 80 100
0

20

40

60

80

100

Number of applications

C
ha

nn
el

 u
til

iz
at

io
n

(i
n

%
)

Number of DCs=3
Number of DCs=6
Number of DCs=9
Number of DCs=12
Number of DCs=15

(c) Study of channel utilization

20 40 60 80 100
0

20

40

60

80

100

Number of applications

D
at

a
ce

nt
er

 u
til

iz
at

io
n

(i
n

%
)

Number of DCs=3
Number of DCs=6
Number of DCs=9
Number of DCs=12
Number of DCs=15

(d) Study of data center utilization

Figure 6.7: Performance evaluation for multiple applications

time of all the applications running in the system. The turnaround time, τ , of a partic-

ular application is computed as the service delay incurred to serve a particular demand

of the application. τ is expressed as:

τ(Appi) =
g(i)∑
j=1

λj ×
Stot

n∑
p=1

g(p)∑
k=1

λk

(6.58)

τmean(Appi) =
|Dnom|∑
q=1

τq (6.59)

where Stot is the total service delay incurred in processing n applications (per DC), each

requesting for g(p) distinct services, and λ being the demand rate. As indicated in Figure

127

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

6.7(a), it can be seen that when the number of DCs are low, the value of τmean increases

with the increase in the number of applications. With the increase in the number of

nominated DCs, the mean turnaround time falls reasonably, as is the case of 12 − 15

DCs.

Mean throughput

The mean throughput, Tmean, of the system is defined as the average outflow of infor-

mation in bits per unit time from every nominated DC. If the pi packets are generated

from a Di ∈ Dnom per ∆t unit of time, then the Tmean is expressed as:

Tmean =
(|Dnom|∑

q=1

P × pq
∆t

)
/ | Dnom | (6.60)

where P being the size of each packet. Now Figure 6.7(b) clearly shows the variation of

the mean throughput with the variation of the number of applications being served and

the total number of nominated DCs. It is observed that the mean throughput increases

significantly with both the increase in the count of the applications and the DCs.

Channel utilization

For the purpose of evaluating the channel utilization χB, the metric is defined as the

ratio of the amount of channel utilized in unit time to the total bandwidth available

χmaxB , expressed as percentage. Mathematically, χ is expressed as:

χB =

|Dnom|∑
q=1

P × pq

χmaxB

× 100% (6.61)

Figure 6.7(c) indicates that percentage of channel utilization is initially low for lower

number of nominated DCs serving the applications. As the count of DCs increase with

the utilization percentage increases reasonably with the increase in the number of cur-

rently running applications.

128

6.6. Performance Evaluation

Mean data center utilization

The mean data center utilization is defined as the ratio of the number of DCs required

to handle the current set of running applications to the total number of DCs that are

available in the system, expressed as percentage. If every Dj ∈ Dnom has a capacity to

handle ni number of applications, and n = {10, 20, ..., 100} is assumed to be the total

number of applications then χD is expressed as:

χD =

[(
n∑
p=1

g(p)∑
k=1

λk

)
mod (| Dnom

]
|) + 1

| Dnom |
× 100% (6.62)

From Figure 6.7(d), it is observed that the utilization percentage is negligible with 3− 6

nominated DCs, and is almost independent to the number of applications being served.

As the count of DCs increase from 9 onwards, the utilization percentage rises significantly

with the increase in the application count.

6.6.4 Complexity Analysis

In this subsection, the asymptotic computational complexity of the proposed work is

discussed and analyzed to justify its applicability for real-time processing. The metric

for computational complexity has been measured in terms of the simulation time by

varying the parameters of simulation, as shown in Figure 6.8. Initially, the setup for

performing the experiment assumes a fixed number of applications (n = 100). The

variation of the simulation time are recorded by varying the number of DCs in different

iterations.

As shown in Figure 6.8(a), the number of temporary DCs are varied from 10 to 100

with a step of 10, and the number of nominated DCs are kept fixed, Dnom = 9. For a

particular number of temporary DC, values are recorded for 50 iterations and are plotted

with 95% confidence. It was observed that the simulation time averages at 0.024 within

interval [0.022, 0.026] with 95% confidence.

129

6. Optimal Data Center Scheduling for QoS Management in Sensor-cloud

 0

 0.01

 0.02

 0.03

 0.04

 0.05

10 20 30 40 50 60 70 80 90 100

Si
m

ul
at

io
n

tim
e

(i
n

se
co

nd
)

Number of temporary data centers

(a) Plot of number of temporary DCs versus sim-
ulation time

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

3 6 9 12 15

Si
m

ul
at

io
n

tim
e

(i
n

se
co

nd
)

Number of nominated data centers

(b) Plot of number of nominated DCs versus sim-
ulation time

Figure 6.8: Complexity analysis by varying system components

Figure 6.8(b) indicates the variation in the computational complexity as the number

of nominated DCs vary. For this experiment, the number of temporary DCs is kept

constant, DAppi = 50, and the count of the nominated DCs are varied from 3 to 15, with

a step size of 3. It is observed that the simulation time centers at 0.0226 within the

interval [0.0214, 0.0238], with 95% confidence.

The mean variance of complexity with the increase in DCs (for Figures 6.8(a), and

6.8(b)) is found to be 8.9 × 10−6 second, and 5 × 10−6 second, respectively. Therefore,

the increase of the computational complexity of the proposed work with the increased

number of DCs is negligible.

6.7 Summary

The proposed work focused on the networking of a sensor-cloud infrastructure. In a

sensor-cloud scenario, data from various physical sensors are grouped to form a VS. An

application requests for multiple such VSs spanning across multiple geographical regions.

Therefore, data from the VSs are collected by several geo-spatial DCs. However, sensor-

cloud involves collection of these VSs to a single VM within a single DC for further

analysis and collective processing. This necessitates scheduling of a single DC to serve

130

6.7. Summary

each application. For the purpose of scheduling, the work propounds a QoS based

optimal decision rule.

131

Chapter 7

Development of a Working

Prototype of Sensor-cloud

Infrastructure

Having discussed about the different technical aspects of sensor-cloud in the previous

Chapters, this Chapter presents the implementation details of a working prototype of

sensor-cloud infrastructure. In the endeavor of prototyping sensor-cloud, some of its

limitations also became evident.

7.1 Limitations of Sensor-cloud

Sensor-cloud infrastructure is envisioned to support multiple end-user organizations with

real-time sensor services. However, existing WSNs typically generate data with enor-

mous volume, velocity, and variety, i.e., the generated data is big in size and are, hence,

to be processed differently. In sensor-cloud platforms, the data are handled using tradi-

tional data processing techniques, which are incapable of managing heterogeneous and

voluminous data in real-time. Thus, with the increasing growth in the velocity, variety,

133

7. Development of a Working Prototype of Sensor-cloud Infrastructure

and variability of data, management becomes a serious concern and difficulty. Addi-

tionally, when multiple user-organizations are required to be simultaneously provisioned

with sensor services, the existing sensor-cloud infrastructure is likely to be overwhelmed

with a huge number of data requests, thereby, potentially creating a “bottleneck” within

the sensor-cloud platform.

Evidently, the existing sensor-cloud systems are unable to capture, analyze, and

control the present data efficiently, in real-time. Another problem that is typically

encountered with the traditional systems is that, as the generated physical data is highly

unstructured, the systems fail to correlate, connect, and process the huge volumes of data

in real-time. This becomes a real difficulty for users or organizations with a large number

of queries to be processed over big-data in real-time.

7.2 Contributions of this Chapter

The goal of this Chapter is to address the aforesaid limitations of sensor-cloud and

introduce an enhanced version in terms of performance of data (or query) processing,

storage, and management. Thus, this Chapter proposes a modified form of sensor-cloud

infrastructure – the Big-Sensor-Cloud Infrastructure (BSCI). BSCI is a platform for

big-data storage, processing, leveraging, and efficient remote management. Similar to

sensor-cloud, BSCI also thrives on virtualization of sensor devices. The major differ-

ence between the two infrastructures lies in the data capture, analyzing, and control

mechanisms. Unlike sensor-cloud, BSCI manages “big” unstructured sensor data from

varied data sources and arranges, correlates, and connects the data using “sophisti-

cated” big-data management techniques. This enables the user organizations to execute

the computationally intensive queries over large data sets in less time.

The proposed BSCI has its own novelty from a business perspective as well. Sensor-

cloud is already being viewed as a potential substitute of conventional WSNs. With the

implementation of BSCI – the proposed technology – the end-users of this technology

134

7.3. Design of Big-Sensor-Cloud Infrastructure

will rapidly evolve because of its efficiency and usefulness. In this context, the work

bears its own relevance as it hugely improves the restricted access of sensor networks

and their resource-constrained nature. The proposed prototype contributes immensely

in effective data management, storage, real-time processing, and retrieval of big sensor

data. The tangibility of BSCI can be measured in terms of its ability to render Se-

aaS even in situations involving a tsunami of data. This positively affects the financial

aspects of the end-user organizations. The CSP also benefits from the model with the

widespread dissemination and effective management of the sensor devices.

7.3 Design of Big-Sensor-Cloud Infrastructure

This Section presents and describes the design details of the proposed BSCI. Initially,

the use-case diagram of the system is presented in Figure 7.1 in which it is observed that

BSCI comprises of five distinct types of actors:

Figure 7.1: Use case diagram for Big-Sensor-Cloud Infrastructure

135

7. Development of a Working Prototype of Sensor-cloud Infrastructure

(i) End-user : The end-users (person/organization) possess their own applications,

which are to be fed with big sensor-data from the physical sensor networks. As the

type and amount of the demand changes with time, the end-users enjoy scalabil-

ity of Se-aaS, provided by the Big-Sensor-Cloud Service Provider (BSCSP), Thus,

the end-users are privileged to demand different sensor services at different time

instants from heterogeneous sensor devices, and the services are offered instanta-

neously by the BSCSP. In return, the end-users are liable to pay as per their usage

of Se-aaS to the BSCSP.

(ii) Sensor-owner : The sensor-owners bear a role from a business perspective. They

purchase physical sensor devices and lend them to the BSCSP. The sensor-owners

earn a monthly monetary profit as per the usage of their respective sensor devices.

(iii) Big-Sensor-Cloud administrator : The Big-Sensor-Cloud administrator primarily

manages and controls the entire cloud processing activities involving virtualization

of the physical sensor devices into distinct Virtual Sensors (VSs), maintenance

and monitoring of the physical sensor devices, organization of the unstructured

data, executing computationally intensive queries over the big-data sets, and real-

time service provisioning of Se-aaS. However, the administrator plays a significant

role in virtualization of the big sensor data, and quantifies the data usage by the

individual end-users. Big sensor data segregation and filtration are also handled

by the administrator.

(iv) Big-data Controller : The Big-data Controller operates within a Virtual Machine

(VM). The controller is primarily responsible for the tabular structurization and

modular organization of big sensor data with each VM in a distributed manner.

The controller is also responsible for the structured storage and provisioning of

huge data volumes in real-time.

(v) Big-Sensor-Cloud Service Provider (BSCSP): The BSCSP is a business actor of

136

7.4. Architecture of Big-Sensor-Cloud Infrastructure

BSCI. The BSCSP maintains a log of the quantified usage of the end-users, and

charges price from the end-users, as per their usage of Se-aaS. The BSCSP main-

tains a pricing policy and offers a Service Level Agreement (SLA) to the end-users

at the time of login.

Figure 7.2: Entity Relationship Diagram for Big-Sensor-Cloud Infrastructure

The entities of the proposed BSCI are identified and the relationship among the

entities are depicted in Figure 7.2. In Chapter 3, the entities – region, sensor and sensor

type and their inter-relationship were modeled. In this Chapter, the entity modeling of

the user, VM, and Virtual Sensor Group (VSG) is introduced, as depicted in the figure.

A temporary VM is allocated on behalf of every active end-user and is employed to serve

the VSs (or groups) in terms of processing and storage. A VM remains active unless an

end-user voluntarily chooses to kill it.

7.4 Architecture of Big-Sensor-Cloud Infrastructure

This Section presents the architectural details of BSCI. Primarily, it is a four-layered

architecture, as shown in Figure 7.3. The several end-user organizations request for the

sensed data to be fetched into their application from the various application-dependent

physical sensor nodes. The user-organization gets connected to the Big-Sensor-Cloud

137

7. Development of a Working Prototype of Sensor-cloud Infrastructure

Figure 7.3: Architecture of Big-Sensor-Cloud Infrastructure

service provider (BSCSP) over the client-cloud interface at the client-end (CCCI). Ini-

tially, the BSCSP provides a specific template to be filled by the end-user organization

comprising of all the information relevant to the application-dependent data. These tem-

plates enable the BSCSP in mapping with the information stored in the Data-metadata

repository, which in turn, helps in activating the specific physical sensor nodes spread

across the physical sensor network. The raw sensed data from the various activated

physical sensor nodes are transmitted to their respective nearest base stations. The raw

138

7.5. Implementation of Big-Sensor-Cloud Infrastructure

sensed data constantly moves in large volume to the repository server of the BSCI, where

they are segregated through a Context-Aware Data Filter, based on the application de-

pendent data. The outcome of the Data Filter is the unstructured VS data accumulating

a group of specific application dependent data to be fetched into their respective request-

ing VM. The unstructured data cannot be efficiently handled with the help of existing

traditional technologies, because the data arrive in large volumes with huge variety and

speed, thus resembling the three Vs characterizing big-data, i.e., volume, variety, and

velocity [138,139].

Big-data within a VM can be handled using the Hadoop [140] open source software,

which consists of two important layers – (a) the execution engine, known as Map Reduce,

and (b) the file system known as Hadoop Distributed File System (HDFS). The unstruc-

tured sensor data is maintained structurally within the HDFS using the programming

paradigm, Map Reduce. Map Reduce performs two basic tasks – Map Task and Reduce

Task. The Map Task takes the unstructured VS data as the input, thereby producing

a sequence of key-value pairs, which is sorted and shuffled by the intermediate sorting

algorithm implemented between the Map and Reduce tasks. Finally, the sorted data are

fed into the Reduce Task, which combines all the values related to a specific key and are

stored within the HDFS.

7.5 Implementation of Big-Sensor-Cloud Infrastructure

This Section presents the layer-wise detailed structure of BSCI. The functional compo-

nents of every layer are described as follows and the implementation details associated

with the components are described in Table 7.1.

Layer 1: Physical sensor network layer

The bottommost layer corresponds to physical wireless sensor devices that communi-

cate with one another using the standard multi-hop routing protocols. The physical

139

7. Development of a Working Prototype of Sensor-cloud Infrastructure

Table 7.1: Implementation details of Big-Sensor-Cloud Infrastructure

Components Activity Require material Time
(hrs)

Major Skills

Physical
sensor nodes

Deploy at different regions 1. Microcontroller development
board with Zigbee (IEEE 802.15.4)
2. Sensors

50 Embedded
programming in CStore definition and metadata

in Data-metadata Repository
Configure routing

Gateway
node

Configure routing 1. Microcontroller development board
with Zigbee (IEEE 802.15.4)
2. USB port

50
Serial
communication
Protocol, Embedded
programming in C

Configure duty cycling
Data channelization through
Universal Serial Bus

Client-Cloud
interface

Build a web interface to
manage the high level
requirements of the user
in the form of templates

Computer server 10
Web technologies,
Graphics handling
in Java

Repository Server

Data channelization
into unstructured Virtual
Sensors Computer server 50

Remote Method
Invocation, Java
programmingData filtering

Virtualization
Data direction to Cloud
server

VS Creation and management Computer server 3 Database skillsActivation and
deactivation

Cloud Server

Create VMs
dynamically Computer server, Eucalyptus 100 Shell scripting,

Eucalyptus managementExecute structurization of
data
Redirect queries to VMs

VM Run customized queries Computer server 100 Hive query handling,
Hadoop Distributed File
System

Analysis of data based on
query

devices transmit the raw sensed data to the Big-Sensor-Cloud infrastructure through

the Gateway node.

Layer 2: Repository Server of Big-Sensor-Cloud

2.1 Repository Server : The raw sensed heterogeneous data (with high volume, velocity,

and variability) are dumped into the repository server, within which the data are fur-

ther processed to generate semi-structured VS data. The individual components of the

Repository Server are discussed.

2.1.1 Client-Cloud Interface (CCI): CCI is one of the components of Layer 2, which

140

7.5. Implementation of Big-Sensor-Cloud Infrastructure

Figure 7.4: Block diagram of layer 1

is further divided into Server-side Client-Cloud Interface (SCCI), and Client-side

Client-Cloud Interface (CCCI). CCCI resides in Layer 4. This interface connects

the end-users to the Big-Sensor-Cloud end through the user login functionality.

CCI interacts with the end-users, and collects the high-level demand requirements.

The requirements are interpreted in terms of resource allocation within the cloud-

end by SCCI.

2.1.2 Context-aware Data Filter: The incoming big-data stream of raw sensed data

is subjected to specialized filters that segregate the data as per the application

demand. The filters are equipped with the ability to handle voluminous data with

enormous heterogeneous data volumes (in zettabyte) generated with tremendous

velocity.

2.1.3 Semi-structured VSs: The filtered data are grouped and aggregated into VSs.

Several VSs form a VSG. The data within the VSs are semi-structured in nature,

and are channelized to the respective VMs for further processing.

141

7. Development of a Working Prototype of Sensor-cloud Infrastructure

Figure 7.5: Block diagram of layer 2

2.1.4 Data-metadata Repository: The information about the physical sensor devices

and the configurations are stored in the data-metadata repository. The policies,

SLAs, and the mapping of VSs with the application demand are also maintained

here.

Layer 3: Cloud Server of Big-Sensor-Cloud

3.1 Cloud Server : The cloud server obtains the semi-structured VS data and routes

those to the respective VMs of the respective end-users.

3.1.1 Virtual Machines (VMs): The VMs are created dynamically based on the user-

demand. The end-users connect to the respective VMs using the Public IP, and the

encrypted RSA keys that are provided to them prior the connection setup phase.

Once the VMs are created, the end-users obtain data from the VMs and archive

within them, as per requirement.

3.1.1.1 Hive Instances: Within every VM, a Hive instance is executed for efficient

142

7.5. Implementation of Big-Sensor-Cloud Infrastructure

processing and management of the data starting from loading of the data,

to the execution of Data Definition Language (DDL), Data Manipulation

Language (DML), and Data Control language (DCL) scripts.

3.1.1.2 Structured VS Data: The output of Hive is obtained in the form of struc-

tured VS data, which are stored with HDFS. The future queries on the big

virtual-sensor data volumes are executed over the structured data sets to

achieve efficiency in processing with minimum delay.

3.1.1.3 Hadoop Distributed File System (HDFS): The result of the Hive queries

are stored within HDFS from where it is transferred to the disk storage of

VMs.

3.1.2 Cloud database: The cloud database stores the necessary information of the

VMs, the public and private IPs of the VMs, the keys to connect with the VMs,

and the mapping of the VMs with the respective end-users. The database also

maintains the metadata of the structured VS information of the different VMs.

Figure 7.6: Block diagram of layer 3

143

7. Development of a Working Prototype of Sensor-cloud Infrastructure

Layer 4: Provisioning Se-aaS to the end-users

The topmost layer of BSCI is the organizational layer, in which, multiple organizations

request for Se-aaS from the BSCSP. The organizations are connected to the Big-Sensor-

Cloud through the CCCI. Followed by the user login operation, the end-users are allowed

to get connected to the VM and access it.

Figure 7.7: Block diagram of layer 4

7.6 Performance Evaluation

In this Section, the performance of the proposed BSCI platform is analyzed. The analysis

is covered in two distinct subsections. In the first subsection, the existing sensor-cloud

infrastructure is compared to the proposed BSCI and the afore-mentioned bottleneck

of sensor-cloud platforms are studied, discussed, and analyzed. Followed by this, a

comparative study is also performed to investigate the sustainability of the two platforms.

The experimental setup is illustrated in Table 7.2.

144

7.6. Performance Evaluation

Table 7.2: Experimental setup

Parameters Values
Processor Intel(R) Core(TM) i3− 2105 CPU @ 3.10 GHz
RAM 2 GB, DDR3
Disk space 320 GB
Operating system Ubuntu 14.04 LTS
Query types DDL, DML, Retrieval
No. end-users 20
No. of sensor-owner 10
Type of sensor 5
Record count [5, 10, 15]× 106

Time 5 years (60 months)
Nodes registered by sensor-owner (n1) 1000
Number of nodes in the WSN (n2) 1000
Number of faulty nodes (n3) 100
Nodes used monthly (n4) 50
Unit cost price of a node (Cs) 20 currency unit
Unit cost due to deployment (Cdeploy) 3 currency unit
Unit cost due to maintenance (Cmaintain) 10 currency unit/month
Unit cost due to rent (Crent) 10 currency unit/month
Cost per unit usage of Se-aaS (CSe−aaS) 10 currency unit/month

7.6.1 Explanation of Parameters

The parameters used for this work have been selected on the basis of prior related

works [104–106]. The values of these parameters are set as per the related works in this

domain that are most cited [107–111].

7.6.2 Bottleneck Analysis of Existing Sensor-cloud

Figure 7.8 studies and analyzes the of BSCI in comparison to traditional sensor-cloud.

To compare the performance of both the platforms, two different metrics are considered

– average response time, and the number of queued requests, which are defined below.

Definition 31. The average response time (Rqi) of a query qi, triggered at time ti, is

the time difference between the time instant (tsi) when the processing for qi commenced

145

7. Development of a Working Prototype of Sensor-cloud Infrastructure

and the time instant when the query was triggered.

Rqi = tsi − ti (7.1)

2000 4000 6000 8000 10000
1

2

3

4

5

6

7

Number of queries

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(i
n

se
co

nd
)

Data size: 5 X 106

Data size: 10 X 106

Data size: 20 X 106

(a) Sensor-cloud

2000 4000 6000 8000 10000
1

1.5

2

2.5

3

Number of queries

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(i
n

se
co

nd
)

Data size: 5 X 106

Data size: 10 X 106

Data size: 20 X 106

(b) Big-sensor-cloud

2000 4000 6000 8000 10000
0

100

200

300

400

500

Number of queries

N
o.

 o
f q

ue
ue

d
re

qu
es

ts

End−users: 103

End−users: 5 X 103

End−users: 104

(c) Sensor-cloud

2000 4000 6000 8000 10000
0

10

20

30

40

Number of queries

N
o.

 o
f q

ue
ue

d
re

qu
es

ts

End−users: 103

End−users: 5 X 103

End−users: 104

(d) Big-sensor-cloud

Figure 7.8: Comparative analysis of performance in sensor-cloud and big-sensor-cloud
platforms

Therefore, for q number of queries, the average response time, R̂q, is obtained as,

R̂q =
q∑
i=1

Rqi (7.2)

To study the average response time, an experimentation is performed by varying the

number of queries from 2000 to 10000 and the average response time for every query

is plotted by varying the data set of every query from 5 million to 20 million. Figure

146

7.6. Performance Evaluation

7.8(a) reflects that with the increase in the query count and the data set size, the average

response time is increased from 2.5 to 7 second averaging at 3.5 second whereas, Figure

7.8(b) indicates that even with large query count and data set sizes, the average response

time varies from 1.2 to 2.5 second with the mean being at 1.5 second. Therefore, the

response time is in general faster in BSCI than in sensor-cloud platforms.

2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Number of queries

Su
st

ai
na

bi
lit

y
m

et
ri

c

Data size: 5 X 106

Data size: 10 X 106

Data size: 20 X 106

(a) Sensor-cloud

2000 4000 6000 8000 10000
0.5

0.6

0.7

0.8

0.9

1

Number of queries

Su
st

ai
na

bi
lit

y
m

et
ri

c

Data size: 5 X 106

Data size: 10 X 106

Data size: 20 X 106

(b) Big-sensor-cloud

2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Number of queries

S
us

ta
in

ab
ili

ty
 m

et
ric

End−users: 103

End−users: 5 X 103

End−users: 104

(c) Sensor-cloud

2000 4000 6000 8000 10000
0.5

0.6

0.7

0.8

0.9

1

Number of queries

S
us

ta
in

ab
ili

ty
 m

et
ric

End−users: 103

End−users: 5 X 103

End−users: 104

(d) Big-sensor-cloud

Figure 7.9: Comparative analysis of sustainability

The second experimentation is done to analyze the number of requests that may

remain queued in a heavy-traffic scenario, i.e., when the query count and the number of

end-users increase rapidly. For a total of q application requests, the number of queued

applications (q′, q′ ≤ q) is given as:

147

7. Development of a Working Prototype of Sensor-cloud Infrastructure

q′ = q − qopt (7.3)

where,

qopt ∈ {1, q} and, Rqopt � Rqth
,Rqopt > Rqopt−1 (7.4)

where qopt is the optimal query count beyond which the average response time of a query

exceeds the threshold response time, Rqth
, and thus, creates the bottleneck.

In Figure 7.8(c), it is observed that as the query count increases, more and more

application requests are being queued and the situation is worse when the count of

end-users reaches up to 104. It can be observed that around 500 applications are left

unserved maximally in such a situation. On the contrary, in a heavy traffic scenario,

BSCI maintains a moderate length of application queue varying from 18 to 38 with the

mean count being close to 20.

To examine the sustainability of the two platforms, the metric of sustainability is

defined as follows:

Definition 32. Sustainability (S) is expressed within a scale of 0 to 1 and is defined as

the proportion of queries that can be responded within the average response time threshold

and with the number of queued requests within the permissible limit. Therefore,

S =



0.5
(
q−qopt

q +

qopt∑
i=1

Rqi

q∑
i=1

Rqi

)
, q′ < qopt, R̂q < Rqth

0.5
(
q−q′
q +

q′∑
i=1

Rqi

q∑
i=1

Rqi

)
, otherwise

(7.5)

Figure 7.9 reflects the sustainability of BSCI and sensor-cloud by varying the two

metrics – average response time, and the number of queued requests. From Figure 7.9(a),

the sustainability reduces and eventually dies off in sensor-cloud with the increase in the

average response time. However, it is better for BSCI where it sustains much longer

148

7.6. Performance Evaluation

for data size of 5 and 10 million. The sustainability reduces with larger data sets of

20 million. As observed from Figure 7.9(b), the sustainability is temporarily high with

higher data size even when the number of queries is low. From the proposed definition

of sustainability (Definition 32), it can be observed that, one of the factors on which

S depends on is the the number of queued requests within the permissible limit. With

a very large number of requests, the queue overflows thereby pushing the remaining

requests in an un-queued state, i.e., the requests are not admitted to be processed. This

reduces the sustainability. However, when the number of queries is low, it is likely to

to accomodate all the requests into the queue and hence, there are no requests that

are un-queued. Thus, even with higher data size, the sustainability increases. Figure

7.9(c) depicts that sensor-cloud loses sustainability with the increase in the number of

queued requests. However, for BSCI, as shown in Figure 7.9(d), the value indicated by

the sustainability metric is improved and retained for a longer time.

7.6.3 Performance Analysis of BSCI

For the purpose of testing the performance of the proposed system, another set of dif-

ferent experimental results are illustrated. Initially, a cash flow analysis is performed to

investigate the profitability of BSCI. Thereafter, experiments are performed to compara-

tively analyze the performance of sensor-cloud and BSCI in terms of the query execution

time.

The theoretical analysis of the cash flow for the different actors of sensor-cloud are

already obtained in Chapter 3. Now the Equations and the plots are re-validated through

the proposed BSCI prototype.

The experimental results, as shown in Figure 7.10(a), demonstrate the annual cash

inflow, outflow, and net profit of the BSCSP for a period of 5 years. The BSCSP serves

20 end-users, and pays rental fees to 10 sensor owners. The net profit is computed

by subtracting the cash outflow from the cash inflow, and is found to be positively

149

7. Development of a Working Prototype of Sensor-cloud Infrastructure

 0

 50000

 100000

 150000

 200000

 250000

 300000

1 2 3 4 5

C
as

h
fl

o
w

 (
u
n
it

s)

Time (in years)

Inflow Net Profit Outflow

(a) Analysis for Big-Sensor-Cloud Service Provider

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5

C
as

h
fl

o
w

 (
u
n
it

s)

Time (in years)

Inflow Net Profit Outflow

(b) Analysis for sensor-owners

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 3 4 5

C
as

h
fl

o
w

 (
u
n
it

s)

Time (in years)

Cloud user WSN user

(c) Comparison between WSN user and Big-
Sensor-Cloud user

Figure 7.10: Cumulative cash flow analysis for the various actors of BSCI

increasing over time. Figure 7.10(b) shows the average cash flows for a sensor-owner

with variable usage of his/her sensor devices. As shown in the Figure, the sensor-owner

experiences a cash outflow only in the first year in terms of investments in procuring the

sensor nodes. The outflow is nullified in the subsequent years and the inflow is based

on the rental fee for the corresponding sensor usage, thereby incurring a positive net

profit. In order to examine the cash flows of the end-user (in case of both normal WSNs

and Big-Sensor-Cloud), the inflows are not directly measurable as such, in terms of the

usage of Se-aaS. A comparative study of the cash outflow is analyzed for both the cases

in Figure 7.10(c). The cash outflow of a WSN user access is due to several reasons –

deployment, maintenance, and overhead, whereas the end-users of Big-Sensor-Cloud pay

150

7.6. Performance Evaluation

on a per-usage basis only for the units of Se-aaS that they consume. The obtained results

from Figure 7.10 have similar trends to Figure 3.2 of Chapter 3, thereby supporting the

validation of the proposed prototype of BSCI.

For the sake of comparison of performance of sensor-cloud and BSCI, several query

types involving DML, DDL, and data retrieval are executed on varied data volumes. A

comparative study is performed in terms of the execution time of the queries both in

sensor-cloud and BSCI.

 0

 2

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

T
im

e
(m

s)

Query Id

Sensor-cloud Big-sensor-cloud

(a) Record count: 5 × 106

 0

 2

 4

 6

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

T
im

e
(m

s)

Query Id

Sensor-cloud Big-sensor-cloud

(b) Record count: 10 × 106

 0

 2

 4

 6

 8

 10

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

T
im

e
(m

s)

Query Id

Sensor-cloud Big-sensor-cloud

(c) Record count: 20 × 106

Figure 7.11: Analysis of DML query execution time

Figure 7.11 presents a comparative study of DML query execution time for different

data sets with varied size of data. Initially, experiments were performed on a data set

with 5× 106 number of records or data entries, as shown in Figure 7.11(a). For both of

151

7. Development of a Working Prototype of Sensor-cloud Infrastructure

the paradigms, the query execution time varies insignificantly. However, the execution

time is consistently low in BSCI, compared to that in sensor-cloud. This is primarily

because of the fact that the entire data set undergoes thorough structurization within

the Hive instance, whereas in sensor-cloud, it requires manipulation of every data entry

within a table of a database. For the data-set with 10× 106 number of entries, as shown

in Figure 7.11(b), the execution time is marginally higher for BSCI, in case of query

1 (q1). The principal reason behind this is the fact that the first query might require

some additional operations related to initial setup and configuration. For subsequent

queries (q2 to q10), BSCI outperforms sensor-cloud significantly. In Figure 7.11(c), the

results of experimentation with data sets comprising of 20× 106 entries (or records) are

shown. A huge improvement of the query execution time is observed when BSCI is used.

Therefore, DML query execution time is improved using BSCI compared to sensor-cloud.

Similar experiments are performed for DDL data queries, the results of which are

summarized in Figure 7.12. For the data-set with 5× 106 number of records, the query

execution time is marginally lower for BSCI, as illustrated in Figure 7.12(a). As the

number of data entries increases to 10 × 106 (see Figure 7.12(b)), there is substantial

reduction in the query execution time. Finally, in Figure 7.12(c), the improvement is

maximum for BSCI, compared to that in sensor-cloud.

Figure 7.13 highlights the analysis of query execution time for retrieval of varied

data-sets. For the retrieval type of queries, the reduction in query execution time is

substantially lower in most of the queries. In fact, as shown in Figure 7.13(c), BSCI

outperforms sensor-cloud remarkably.

7.7 Summary

This Chapter discusses the development of a prototype implementation of BSCI for re-

alizing Se-aaS. The work addresses the problems of existing sensor-cloud infrastructure

in terms of its processing ability. Unlike sensor-cloud, BSCI is a platform that handles

152

7.7. Summary

 0

 0.1

 0.2

 0.3

 0.4

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

T
im

e
(s

ec
o
n
d
)

Query Id

Sensor-cloud Big-sensor-cloud

(a) Record count: 5 × 106

 0

 0.1

 0.2

 0.3

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

T
im

e
(s

ec
o
n
d
)

Query Id

Sensor-cloud Big-sensor-cloud

(b) Record count: 10 × 106

 0

 0.1

 0.2

 0.3

 0.4

 0.5

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

T
im

e
(s

ec
o
n
d
)

Query Id

Sensor-cloud Big-sensor-cloud

(c) Record count: 20 × 106

Figure 7.12: Analysis of DDL query execution time

the processing, structuring, and orientation of big-data generated from multiple organi-

zations, simultaneously. Within each VM of BSCI, an HDFS and a Hive instance are

installed to enable the distributed processing of the voluminous and heterogeneous data.

The work illustrates the implementation details of the infrastructure. The experimental

results (for DDL, DML, and data retrieval queries) highlight the enhancement achieved

through BSCI over sensor-cloud platforms in terms of the query execution time. The

cash flow analysis, done for various actors, justifies the prospect of BSCI from a business

perspective.

153

7. Development of a Working Prototype of Sensor-cloud Infrastructure

 0

 10

 20

q1 q2 q3 q4

T
im

e
(m

s)

Query Id

Sensor-cloud Big-sensor-cloud

(a) Record count: 5 × 106

 0

 10

 20

 30

q1 q2 q3 q4

T
im

e
(m

s)

Query Id

Sensor-cloud Big-sensor-cloud

(b) Record count: 10 × 106

 0

 10

 20

 30

 40

 50

 60

q1 q2 q3 q4

T
im

e
(m

s)

Query Id

Sensor-cloud Big-sensor-cloud

(c) Record count: 20 × 106

Figure 7.13: Analysis of retrieval query execution time

154

Chapter 8

Application Specific Analysis of

Sensor-cloud Infrastructure:

Target Tracking

The previous Chapters of the dissertation discusses the various challenges involved in

conceptualizing sensor-cloud infrastructure and the dissertation eventually presents a

working prototype of sensor-cloud in Chapter 7. After establishing the prototype imple-

mentation of sensor-cloud, this dissertation focuses to validate it by executing a single

WSN-based application through it. This Chapter mounts a very popular WSN-based

application to a sensor-cloud platform and examines the consequent performance of the

application.

Target tracking in WSNs is already explored in the recent past and is one of the most

popular WSN-based applications. This Chapter focuses to mount a common algorithm of

target tracking application within sensor-cloud and analyze the uncertainties that might

come up while executing the traditional sensor-based applications using sensor-cloud.

As mentioned earlier, sensor-cloud is a computational platform that may involve

multiple organizations with heterogeneous demands. In such a multi-organizational sce-

155

8. Application Specific Analysis of Sensor-cloud Infrastructure: Target
Tracking

nario, conventional target tracking applications are anticipated to encounter a difficulty.

The difficulty considers a scenario of tracking multiple targets when the mobile targets,

belonging to different organizations, may come so close that they might fall under the

sensing range of one or more physical sensor nodes, thereby leading to overlapping cov-

erage of the targets by the sensor nodes. It is important to generate distinct clusters

(VSs) of sensor-nodes corresponding to each of the targets. The difficulty in addressing

the problem is that in a conventional WSN, the sensor nodes are typically equipped with

some basic analytical and decision-making abilities, and algorithmic processing of data

occurs within each sensor node followed by transmission of the target-specific aggregated

data. However, in a sensor-cloud environment, sensor nodes are treated as mere sensing

units with minimal network management and end user supervision. The raw sensed

data are directly transmitted to the sensor-cloud environment where it as aggregated in

a target specific manner, and then transmitted to the end-users. This introduces the

challenge to manage distinct sensor clusters for each target. In such a scenario, the

problem of sensor-target mapping induces research interest.

8.1 Contribution of the Chapter

The proposed work is not a trivial extension of the existing works, as prior related works

are implemented on conventional WSNs. The contribution of this work is to address

the above-mentioned issues within sensor-cloud by correctly mapping sensors to their

corresponding targets, assuming that a sensor node covers one (Figure 8.1(a)) or more

(Figure 8.1(b)) targets, at a particular time instant. It is required to perform a primary

mapping of the physical sensor nodes to targets followed by a secondary mapping of

physical sensor nodes to virtual sensor groups. The work performs a utility-based primary

mapping within the sensor-cloud environment, simply from the raw sensed data and the

previous knowledge about the targets.

156

8.2. S-DMA: Social choice based Dynamic Mapping Algorithm

(a) Distinct cluster (b) Non-distinct cluster

Figure 8.1: Local cluster formation

8.2 S-DMA: Social choice based Dynamic Mapping Algo-

rithm

It is assumed that every sensor node is capable of estimating the target coordinates from

its sensor reading. There are two symmetric distance matrices X(1..N) and Y (1..N),

which contain the global coordinates of every node, i, represented as C(i) = (X[i], Y [i]).

It is required to detect the presence of overlapping sensor coverage area involving two

or more targets.

8.2.1 Detection of Overlapping Coverage

It is assumed that nt is the total number of targets tracked within a sensor-cloud en-

vironment. The location coordinates of a detected target ti at time t are denoted by

(xti ,yti). The sensor-cloud infrastructure uses the sensed data (xti ,yti) at time t− 1 and

predicts (x′ti ,y
′
ti) at time t using standard location estimation algorithms. Nodes that

are within d distance from the target ti are activated, where the value of the distance

parameter d is predetermined. Thus, ξ((x′ti , y
′
ti), C(j)) ≤ d, for each j, where ξ denotes

the Euclidean metric in a 2D plane. The metric ξ(p, q) between two points p and q is

expressed as ξ(p, q) =
√

(xp − xq)2 + (yp − yq)2. Thus, an array of active sensor nodes is

obtained from the above relation. To determine the formation of overlapping regions, it

157

8. Application Specific Analysis of Sensor-cloud Infrastructure: Target
Tracking

is needed to examine, for every selected node si, such that ξ(C(si), tk) > d, k = nt − 1.

In other words, only for a single target tj , the inequality must hold true to ensure non-

overlapping sensor coverage. However, if an overlap is detected, the scheduling of sensor

nodes needs to be governed and steered, accordingly. It is assumed that a total of ns

overlapped sensor nodes are detected for nt targets.

8.2.2 Calculation of ‘Eligibility’ Factor of a Sensor Node

Initially, for every possible sensor-target combination, a boolean parameter, named ‘eli-

gibility’ factor is defined. It is the output of a binary function u(·, ·), referred to as the

‘eligibility’ function. The function is expressed as a mapping u : S X T → [0,1], where S

is the set of overlapping sensor nodes selected for the current set of targets, and T is the

current set of targets to be tracked. If ρsi is the sensing radius of a node, the mapping

u is defined as:

u(si, tj) =

 0, ξ(si, tj) > ρsi

1, otherwise
(8.1)

8.2.3 Computation of Nodal Preference

Prior to computing the nodal preferences, a new metric termed Coverage Contraction

Factor (CCF) is introduced.

Definition 33. Coverage Contraction Factor (αsi) is introduced to examine a node’s

energy content and it computes the residual battery status of a sensor node. CCF is

expressed as:

αsi = (Eact,si − Ecur,si)/Eact,si (8.2)

where Ecur and Eact are the current and initial energy levels of a node and 0 ≤ αsi ≤ 1.

As the approach of the proposed work is based on the Theory of Social Choice [141],

every active sensor node has its own preference of targets, articulated by means of a

linear ordering. Preference Pi and indifference Ii of a node i are the symmetric and

158

8.2. S-DMA: Social choice based Dynamic Mapping Algorithm

asymmetric components of the relation, respectively [141]. Thus, taPitb 6⇒ tbPita.

Also, taIitb ⇒ tbIita ⇒ ta ≡ tb.

Now, the focus is on evaluating a node’s ordering of preferences for each target of

interest at time t. After the data from the physical sensor nodes are transmitted, nodal

preferences are evaluated on servers of the sensor-cloud infrastructure. A utility function

Ψ is designed for every sensor-target pair. Thus,

Ψ(si, tj) =


λ1
αsi

+ λ2
ρsi

ξ(si,tj) , αsi 6= 0

B + λ2
ρsi

ξ(si,tj) , αsi = 0
(8.3)

where B is a large integral value, and λ1, λ2 (when λ1 < λ2) are the weighted system-

modeled coefficients. Nodal ordering of preferences of targets are based on a preference

value Θ, which is defined as:

Θ(si, tj) = Ψ(si, tj)× u(si, tj) (8.4)

If a node is not eligible for tracking a particular target, the preference value is zero.

Having calculated the preference value for every sensor-target pair, each sensor node

then creates its own ordering of choices. For a sensor node si, Θ(si, ta) > Θ(si, tb) ⇒

taPsitb,Θ(si, ta) = Θ(si, tb)⇒ taIsitb. However, the preference ordering for every sensor

node should be complete and transitive [141]. Hence, it implies,

(tjPsitk) ∨ (tjIsitk), ∀j, k ∈ T (8.5)

(tjXsitk) ∧ (tkXsitl)⇒ tjXsitl, ∀j, k, l ∈ T (8.6)

where Xsi = {Psi , Isi}. Equations (8.5) and (8.6) ensure the completeness and transi-

tivity axioms, respectively. After obtaining the preferences of every node at time t, a

matrix Θnet[1..ns][1..nt] is obtained for the entire network. Now, some relevant terms

159

8. Application Specific Analysis of Sensor-cloud Infrastructure: Target
Tracking

are defined as follows:

Definition 34. A preference ordering Rti for a particular target ti is the set of preference

values of the different sensor nodes casted for ti, i.e., Rti = {Θs1,ti ,Θs2,ti , ..,Θsns ,ti}.

Definition 35. A preference profile P is the set of potential preferences, i.e., P =

{Rt1 , Rt2 , .., Rtnt
}.

8.2.4 Social Choice Aggregation

Once the preference profile is established, the Social Aggregation Function (SAF) and

Social Choice Function (SCF) are embarked on. The SAF is defined as a mapping

F : Pns! → Rnt×nth , i.e., F maps a preference domain to a mapping matrix M , M [i][j]

denotes the allocation of the jth sensor node to target ti, nth is the threshold value for

the maximum number of sensor nodes that can be allocated to a target. SCF f is defined

as a mapping f : P × T → S, i.e., given a preference profile and a particular target, a

particular sensor node or the social choice winner swin can be mapped to the target

based on the choice of the society.

F (P) = F (Rt1 , Rt2 , .., Rtnt
) = M,f(Rti) = swin (8.7)

In this work, it is assumed that nt � ns. Multiple iterations are performed on

random ordering of targets till all sensor nodes are allocated. For the selection of a

‘fair’ winner, as per Arrow’s Impossibility Theorem [142], the positive effects of Plurality

Voting [141] and Borda’s algorithm [141] are merged with the proposed algorithm, as

presented in Algorithm 1. For ti, the society mean µsoc is formulated and expressed as,

µsoc =
∑
∀sj∈S βsj ×Θ(sj , ti)∑

∀sj∈S βsj

(8.8)

where {βsj ×Θ(sj , ti)} denotes the is the social preference order. r(sj , Rti) is the posi-

160

8.2. S-DMA: Social choice based Dynamic Mapping Algorithm

tional value1 of a voter in the profile of a target, expressed as, βsj = ns− r(sj , Rti). The

winner node swin is obtained by,

swin = M [i][win] = min
∀sj∈S

|(µsoc −Θsj ,ti)| (8.9)

The winner node swin can be considered as the Plurality winner, as its score for ti is

the closest to the society mean, thereby earning the highest ability to win the target.

Input:

1. Set of mobile targets: T .

2. Set of sensor nodes with overlapping coverage: S.

Output:

A mapping matrix M [1..nt][1..nth].

1 for si ∈ S do

2 for tj ∈ T do

3 Compute Θ(si, tj)

4 end

5 end

6 while (∃si ∈ S) ∧ (si 6= M [p][q]), ∀p ∈ T, q ∈ S do

7 Generate a random ordering of targets T̂

8 for j = 1 to nt do

9 M [j][win] = swin = f(RT̂j
)

10 Remove swin from S, P

11 end

12 end
Algorithm 6: S-DMA algorithm

1Positional significance of a node can be viewed as its Borda score. However, it is not explicitly
termed as ‘Borda’ score, as the Borda score is ideally applicable to candidates instead of voters.

161

8. Application Specific Analysis of Sensor-cloud Infrastructure: Target
Tracking

8.3 Analytical Results

Proposition 8.3.1. The worst case asymptotic computational complexity of S-DMA and

communicational complexity for a single target are O(ns × nt) and O(n2
s), respectively.

Proof. For nt number of mobile targets, step 1 of S-DMA is computed in ns × nt time.

Steps 3, 5, and 6 of Algorithm 1 is executed in constant time c1. Steps 4 through 7 takes

O(nt). Thus,

T (nt) = nsnt + T (ns − 1) + c1nt, T (1) = c2

Simplifying, it can be obtained that, T (nt) = O(ns × nt). For communication load,

every node, si, communicates with the sensor-cloud through multi-hop route. The num-

ber of hops is O(i−1). Communication load C for a single target involving ns overlapping

sensors can be expressed as C(1) = Θ(1), C(ns) =
ns∑
i=2

O(i− 1) ' O(n2
s). This completes

the proof.

Lemma 8.3.2. S-DMA satisfies non-dictatorship.

Proof. An SCF is dictatorial if ∃si : taPsitb ⇒ taPsj tb, ∀sj ∈ S [142]. But in S-DMA,

∀si ∈ S, Θsi,·. Also, 6 ∃si : taPsitb ⇒ taPsj tb, ∀sj ∈ S. For any target ti, if f(Rti) = swin,

6 ∃si, such that, f(Rti) = sj , where S = S−{si}, or S = S+{si}, si 6= sj . Thus, S-DMA

is non-dictatorial.

Lemma 8.3.3. S-DMA satisfies the Independence of Irrelevant Alternatives.

Proof. Independence of Irrelevant Alternatives (IIA) claims that the internal ranking

between two alternatives is independent of a third alternative [142]. In S-DMA, let P1

and P2 be two preference sub-profiles containing Ŝ sensor nodes, and let ti an tj be two

target alternatives, such that Ŝ ⊂ S, ti �P1 tj and, ti �P2 tj . Then, S-DMA concludes

that ∀si ∈ Ŝ. Thus, Θsi,ti ≥ Θsi,tj ⇒
∑
∀si∈Ŝ

Θsi,ti ≥
∑
∀si∈Ŝ

Θsi,tj ⇒ ti �Ŝ tj . This concludes

the proof.

162

8.3. Analytical Results

Corollary 8.3.4. S-DMA dissatisfies the Pareto Axiom (P).

Explanation: From Arrow’s Impossibility Theorem [142], it can be obtained that

no aggregation function can simultaneously satisfy non-dictatorship, IIA and P. Thus,

from Lemma III.1 and III.2 it can be inferred that S-DMA dissatisfies P.

Theorem 8.3.5. S-DMA tends to select the Condorcet winner.

Proof. The sensor node preferences are assumed as (ta, tb, tc), (tb, ta, tc), (tb, tc, ta),

(tc, tb, ta), (tc, ta, tb), and (ta, tc, tb). Let ta be the Condorcet winner (through pair-

wise voting) for some sensor node si. Therefore„ Θs2 + Θs3 + Θs4 + Θs5 ≤ Θs1 + Θs6 .

Assuming the correctness of a Condorcet winner, a hyper-plane is considered and di-

vided into distinct sensor node regions. The normal to the correct side is obtained

as N1 = (1,−1,−1,−1,−1, 1). In S-DMA let the positional significance be (2,γ,0).

From Equation 8.9, it is obtained that, γΘs2 + γΘs5 ≤ 2Θs1 + 2Θs6 . Thus, N2 =

(2k,−γk, 0, 0,−γk, 2k), assuming Θsi,ta = k,∀si ∈ S. If φ is the angle between N1 and

N2, cos(φ) = N1.N2
|N1||N2| = 2γ+4√

6
√

2γ2+16
= h(γ). Thus,

dh(γ)
dγ

= 1√
6

2
√

2γ2 + 16− 4(2γ2 + 16)−
1
2 (2γ + 4)

(2γ2 + 16) (8.10)

The angle between the normals should be minimized to obey Condorcet criterion. Eval-

uating, dh(γ)
dγ = 0, it is found that γ → 1. Thus, correct positional value is assigned by

following S-DMA. This concludes the proof.

Proposition 8.3.6. S-DMA respects Plurality voting.

Proof. Plurality voting selects a winner agent, which obtains the highest score of the

society. From Equation 8.9, it is found that the winner node swin satisfies |(µsoc −

Θswin,ti)| → 0⇒ Θswin,ti → µsoc. Thus, Θswin respects µsoc, which is a society parameter.

Hence, swin is also the Plurality winner.

163

8. Application Specific Analysis of Sensor-cloud Infrastructure: Target
Tracking

Figure 8.2: Projection of S-DMA against HMTT

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200C
um

ul
at

iv
e

E
ne

rg
y

C
on

su
m

pt
io

n
(n

J)

Sensor nodes

Computation (PPSS)
Computation (S-DMA)
Communication (PPSS)

Communication (S-DMA)
Total (PPSS)

Total (S-DMA)

Figure 8.3: Comparison of energy consumption

Now some of the experimental results are presented. To validate the correctness of

S-DMA, a uniform random deployment of 250 sensor nodes (ρsi = 200 m, Csi ≥ 2ρsi)

is assumed in an area of 1 km x 1 km, Csi being the communication range. Figure 8.2

shows that two targets enter the zone, and move close to each other. S-DMA clearly

outperforms the existing algorithm —Hierarchical Markov Decision Process (HMDP)

for target tracking (HMTT) [143], in terms of tracking accuracy. Unlike [143], S-DMA

proposes a “fair" sensor-target mapping, which improves the tracking accuracy especially

164

8.3. Analytical Results

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

So
ci

al
 p

re
fe

re
nc

e,
 P

os
iti

on
al

 s
ig

ni
fi

ca
nc

e

Pr
ef

er
en

ce
 v

al
ue

s

Sensor Node Id

Preference profile
Positional significance

Social preference

(a) Target specific nodal preferences

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

U
til

ity

Sensor Node Id

Preference profile
Social mean

Normal mean

(b) Analysis of Rti

Figure 8.4: Values related to the preference profile

in situations of overlapping coverage of sensors. Assuming the communication and pro-

cessing energy as 40 nJ/bit and 10 nJ/bit, respectively, and subjecting the algorithms

to identical sensing phenomenon, Figure 8.3 clearly shows that, unlike Probability-based

Prediction and Sleep Scheduling protocol (PPSS) [144], S-DMA exhibits a low energy

consumption for computation as the processing and evaluation is mainly executed at the

sensor-cloud end. Further, in PPSS, multi-hop communication within the network and

data transmission to a data center contributes for the overall communication energy. On

the contrary, inter node communication is negligible in S-DMA, multi-hop transmission

being the main component for energy consumption. This conserves the total energy

appreciably. To enhance the understandability, Figure 8.4(a) depicts the combined im-

165

8. Application Specific Analysis of Sensor-cloud Infrastructure: Target
Tracking

pact of positional significance and the preference values on the collective preferences of

a target for 10 sensor nodes. The preference profile curve is aligned to the secondary y

axis. Figure 8.4(b) demonstrates the difference of magnitude of the normal mean from

the social mean. The experiment is executed to compute the standard deviation of the

summation of preference values for the sensors assigned to each target. The mean of the

standard deviations over 100 iterations was found close to 0.71 with a 99% confidence

interval. This suggests that the proposed algorithm is unbiased to targets and maintains

uniformity while mapping.

8.4 Conclusion

The proposed algorithm, S-DMA, ensures the best possible allocation of sensors to tar-

gets. However, there can be challenges if two adjacent sensor nodes are heterogeneous

with respect to their sensing types, as multi-hop communication in such scenario will

require protocol standardization. Our future work will focus on extending the current

problem in the context of such heterogeneous sensor nodes.

166

Chapter 9

Summary and Conclusion

The dissertation focuses on the development of sensor-cloud infrastructure. The pro-

posed research was initiated in 2013, when all of the existing research works focused

primarily on the dogma, the principles, and the conceptualization of sensor-cloud. How-

ever, research work that provide scientific and technological concreteness to the con-

cept of sensor-cloud infrastructure were scarce. From an implementation viewpoint, the

scope of technical and theoretical research in this domain is identified to mathemati-

cally suggest the shift of paradigm from traditional WSNs. The goal of this research is

to resolve the technical challenges and eventually build a fully-functional prototype of

sensor-cloud. The proposed research has succeeded in building a partially-functional pro-

totype of sensor-cloud infrastructure, which is currently the only available infrastructure

rendering Se-aaS, to the best of my knowledge.

9.1 Summary of the dissertation

The problem that is aimed to be solved is that with the existing state-of-the-art (i.e.

traditional WSNs), the common mass of people cannot enjoy the very emerging sensor

technology without being directly involved with the purchase, deployment, maintenance,

and management of the sensor nodes. The problem is intense and nontrivial as most

167

9. Summary and Conclusion

of the end-users are naive and overheads associated with a WSN are expensive. To

address the afore-mentioned problem, the proposed research focuses on building a holistic

prototype of sensor-cloud infrastructure, rendering Se-aaS – the first attempts of its kind.

While building the prototype, innumerable challenges and difficulties are identified as

potential research objectives of the dissertation.

Chapter 2 presents the literature survey on the domain of sensor-cloud platform.

The Chapter is broken down into distinct sections comprising of the evolution, pricing,

and the networking aspects in sensor-cloud platforms. In the end, those works, that

have practical contributions from a developer’s point of view, are elaborately studied

and analyzed.

Chapter 3 presents a thorough theoretical characterization of virtualization within

sensor-cloud infrastructure. Some interesting features of sensor-cloud platforms are also

investigated and studied. Followed by the theoretical characterization, the Chapter

experimentally compares the network performance for both traditional WSNs and sensor-

cloud platforms. Further, from an economic viewpoint, a cash flow analysis is also

performed to determine the profit for all the actors of sensor-cloud.

In Chapter 4, the motivation behind the need for a data caching mechanism within

sensor-cloud is presented. Subsequently, the Chapter presents a dynamic and adaptive

data aching policy that simultaneously maintains the information accuracy and reduces

the network overhead.

The pricing policy to be followed within sensor-cloud is investigated and studied in

Chapter 5. The Chapter clearly divides the aspect of pricing into two distinct categories

– pricing due to hardware and pricing due to infrastructure. The Chapter propounds

two different algorithms for both hardware and infrastructure and eventually shows that

the proposed pricing scheme optimizes the profit of the CSP, thereby maintaining the

end-user satisfaction.

Chapter 6 focuses on the networking of multiple DCs involved in a sensor-cloud plat-

168

9.2. Contribution of Our Work

form. Considering the fact that multiple VSs serving an application may be temporarily

formed at geo-spatially distributed DCs, however, eventually, it is required to choose a

single DC that handles all data processing, management, aggregation for the particular

application. To address this problem, the Chapter proposes a DC scheduling algorithm

that chooses the correct DC, thereby optimizing the network overhead associated with

it.

In Chapter 7, the holistic prototype building of sensor-cloud is thoroughly discussed

and analyzed. Some of the limitations of sensor-cloud platforms are identified and a

modified platform is constructed. Finally, experiments are performed to examine the

performance of the existing and the modified sensor-cloud prototypes.

Once the prototype is built, Chapter 8 focuses to validate it by executing a common

WSN based application using it. In this specific work, the chosen application is target

tracking. It is observed that the application had to be modified because of the difficulty

encountered due to this paradigm shift. However, the difficulty was resolved by proposing

a new algorithm.

9.2 Contribution of Our Work

The proposed research has focused on building a holistic prototype of sensor-cloud in-

frastructure, rendering Se-aaS. The primary contributions of the dissertation have been

as follows:

• Theoretical characterization of sensor-cloud and justification for a paradigm shift

from conventional WSNs: Initially, the work has focused on the theoretical mod-

eling of virtualization of physical sensor nodes. The necessity for a paradigm shift

for all WSN-based applications to a sensor-cloud platform has been experimentally

justified. The proposed work has suggested a framework for performance analysis

of sensor-cloud based on few chosen metrics such as fault-tolerance, lifetime of a

169

9. Summary and Conclusion

sensor node, and energy consumption, in contrast to that of a WSN. Finally, this

work has endeavored to conceive the idea of using physical Se-aaS.

• Data caching policies with the infrastructure: An optimal caching mechanism

within sensor-cloud has been proposed to obtain resource efficiency in terms of

energy and network lifetime. The proposed data caching mechanism is dynamic,

and is adaptive to the change of the physical environment. Thereby, it preserves

the accuracy of information and conserves the network resources, simultaneously.

• Designing of a dynamic and optimal pricing scheme, specifically for Se-aaS : As

a cloud computing platform generally conforms with a pay-per-use model, within

sensor-cloud platforms, the end-users utilize the physical sensors and the cloud

infrastructure as per their demand and pay as per their use, to the CSP. Thus, a

pricing scheme has been developed for Se-aaS to quantify the use by the end-users

and charge them accordingly.

• Optimal DC scheduling and networking withing DCs for QoS management: The

work has proposed a DC scheduling algorithm for routing and channelization of

the data of the VSs originating from multiple regions, to geographically distributed

sensor-cloud data centers (DCs). The work has also focused to choose a single DC

serving a particular application by reducing the network overhead simultaneously.

• Functional prototype development for Se-aaS : This work has dealt with the devel-

opment of a prototype of sensor-cloud infrastructure using real sensor hardware

and cloud platform. The work has identified the limitations of the basic sensor-

cloud infrastructure and has proposed a modified infrastructure.

• Application specific analysis of sensor-cloud infrastructure: This work has consid-

ered the challenges and uncertainties that might arise while executing the tradi-

tional sensor-based applications using sensor-cloud. The problem has been inves-

170

9.3. Future Scope of Work

tigated in a multiple target tracking application scenario, using the sensor-cloud

platform.

9.3 Future Scope of Work

In future, sensor-cloud platforms can induce significant research interests in the following

topics:

• Future works may include details of design issues, and standardization of commu-

nication protocols for sensor-cloud infrastructure.

• Schemes for optimization of sharing and coherence of resources can also be pro-

posed. Additionally, each type of application can be analyzed for understanding

the distinctness of its behavior within a sensor-cloud environment.

• It is also motivating to explore additional issues associated with the QoS param-

eters of sensor-cloud infrastructure. The examination of cost-effectiveness due to

caching also induces research attention. Other aspects of sensor virtualization can

also be considered as a relevant direction of future research.

• Further, another interesting area is extending the problem for dynamic shifting of

VMs among DCs for serving applications, thereby ensuring localized load sharing

and balancing among the DCs. Revisiting the problem for a mobile sensor-cloud

scenario also induces research interest.

171

References

[1] S. Misra and S. Singh, “Localized Policy-Based Target Tracking Using Wireless
Sensor Networks,” ACM Transactions on Sensor Networks, vol. 8, no. 3, July 2012.

[2] N. Watthanawisuth, A. Tuantranont, and T. Kerdcharoen, “Design for the next
generation of wireless sensor networks in battlefield based on ZigBee,” in Defense
Science Research Conference and Expo (DSR), Singapore, August 2011, pp. 1–4.

[3] H. Yang, Y. Qin, G. Feng, and H. Ci, “Online Monitoring of Geological CO2

Storage and Leakage Based on Wireless Sensor Networks,” IEEE Sensors Journal,
vol. 13, no. 2, pp. 556 – 562, February 2013.

[4] S. Jimenez-Fernandez, P. de Toledo, and F. del Pozo, “Usability and Interoper-
ability in Wireless Sensor Networks for Patient Telemonitoring in Chronic Disease
Management,” IEEE Transactions on Bio-Medical Engineering, vol. 60, no. 12,
pp. 3331 – 3339, November 2013.

[5] C. Bachmann, M. Ashouei, V. Pop, and M. Vidojkovic, “Low-power wireless sen-
sor nodes for ubiquitous long-term biomedical signal monitoring,” IEEE Comm.
Magazine, vol. 50, no. 1, pp. 20 – 27, Jan 2012.

[6] Y. Yuan, J. Zhao, and C. Qiu, “Estimating Crowd Density in an RF-Based Dy-
namic Environment,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3837 – 3845, Oct
2013.

[7] X. Wang, M. Chen, T. Kwon, and H.-C. Chao, “Multiple Mobile Agents Itinerary
Planning in Wireless Sensor Networks: Survey and Evaluation,” IET Communi-
cations, vol. 5, no. 12, pp. 769–1776, 2011.

[8] Y. Rachlin, R. Negi, and P. K. Khosla, “The Sensing Capacity of Sensor Networks,”
IEEE Transactions on Information Theory, vol. 57, pp. 1675–1691, March 2011.

173

References

[9] Y. Liu, K. Liu, and M. Li, “Passive Diagnosis for Wireless Sensor Networks,”
IEEE/ACM Transactions on Networking, vol. 18, pp. 1132–1144, August 2010.

[10] R. Shorey, A. Ananda, M. C. Chan, and W. T. Ooi, Mobile, Wireless, and Sensor
Networks: Technology, Applications, and Future Directions. Wiley-IEEE Press,
2006.

[11] S. S. Iyengar, N. Parameshwaran, V. V. Phoha, N. Balakrishnan, and C. D.
Okoye, Fundamentals of Sensor Network Programming: Applications and Tech-
nology. Wiley-IEEE Press, 2010.

[12] A. Marchiori and Q. Han, “A Two-Stage Bootloader to Support Multi-application
Deployment and Switching in Wireless Sensor Networks,” in International Con-
ference on Computational Science and Engineering, 2009, pp. 71–78.

[13] J. L. Hill, “System Architecture for Wireless Sensor Networks,” Ph.D. dissertation,
University of California, Berkeley, 2003.

[14] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A. Hos-
sain, “A Survey on Sensor-Cloud: Architecture, Applications, and Approaches,”
International Journal of Distributed Sensor Networks, vol. 2013, Nov 2013.

[15] K.-L. Tan, “What’s NExT?: Sensor + Cloud!?” in DMSN, ser. ACM International
Conference Proceeding Series, D. Zeinalipour-Yazti and W.-C. Lee, Eds. ACM,
2010.

[16] L. Ferretti, F. Pierazzi, M. Colajanni, and M. Marchetti, “Scalable Architecture
for Multi-User Encrypted SQL Operations on Cloud Database Services,” IEEE
Transactions on Cloud Computing, vol. 2, pp. 448–458, Oct 2014.

[17] X. Zhang, L. Yang, C. Liu, and J. Chen, “A Scalable Two-Phase Top-Down Spe-
cialization Approach for Data Anonymization Using MapReduce on Cloud,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 2, pp. 363–373, Feb
2014.

[18] K.-W. Park, J. Han, J. Chung, and K. H. Park, “THEMIS: A mutually verifi-
able billing system for the cloud computing environment.” IEEE Transactions on
Services Computing, vol. 6, no. 3, pp. 300–313, 2013.

[19] M. Yuriyama and T. Kushida, “Sensor-Cloud Infrastructure - Physical Sensor Man-
agement with Virtualized Sensors on Cloud Computing,” in 13th International
Conference on Network-Based Information Systems (NBiS), Sept 2010, pp. 1–8.

174

References

[20] Open Geospatial Consortium. http://www.opengeospatial.org/.

[21] M. Botts, Ed., Sensor Model Language (SensorML) for In-situ and Remote Sen-
sors, Open Geospatial Consortium Inc., 2004.

[22] C.-F. Lai, H. Wang, H.-C. Chao, and G. Nan, “A Network and Device Aware QoS
Approach for Cloud-Based Mobile Streaming,” IEEE Transactions on Multimedia,
vol. 15, no. 4, pp. 747–757, June 2013.

[23] C.-F. Lai, Y.-X. Lai, H.-C. Chao, and J. Wan, “Cloud-assisted Real-time Tran-
srating for HTTP Live Streaming,” IEEE Wireless Communications Magazine,
vol. 20, no. 3, pp. 62–70, June 2013.

[24] S. E. Plummer, “The GLOBCARBON Cloud Detection System for the Along-
Track Scanning Radiometer (ATSR) Sensor Series,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 46, no. 6, pp. 1718–1727, June 2008.

[25] M. M. E. A. Mahmoud and X. Shen, “A Cloud-Based Scheme for Protecting
Source-Location Privacy against Hotspot-Locating Attack in Wireless Sensor Net-
works,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 10,
pp. 1805–1818, Oct 2012.

[26] S. Misra, S. Bera, A. Mondal, R. Tirkey, H.-C. Chao, and S. Chattopadhyay,
“Optimal gateway selection in sensor-cloud framework for health monitoring,” IET
Wireless Sensor Systems, vol. 3, no. 4, December 2013.

[27] C. Zhu, Z. Sheng, V. C. M. Leung, L. Shu, and L. T. Yang, “Toward Offering
More Useful Data Reliably to Mobile Cloud From Wireless Sensor Network,” IEEE
Transactions on Emerging Topics in Computing, vol. 3, no. 1, pp. 84–94, March
2015.

[28] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The Many Faces
of Publish/Subscribe,” ACM Computing Surveys, vol. 35, no. 3, pp. 114–131, 2003.

[29] M. M. Hassan, B. Song, and E.-N. Huh, “A Framework of Sensor-Cloud Integra-
tion Opportunities and Challenges,” in International Conference on Ubiquitous
Information Management and Communication, 2009.

[30] M. Eggert, R. Haubling, M. Henze, L. Hermerschmidt, R. Hummen, D. Kerpen,
A. N. Perez, B. Rumpe, D. Thiben, and K. Wehrle, “SensorCloud: Towards the

175

References

Interdisciplinary Development of a Trustworthy Platform for Globally Intercon-
nected Sensors and Actuators,” RWTH Aachen University, Germany, Tech. Rep.,
2013.

[31] L. D. Kumar, S. Grace, A. Krishnan, V. M. Manikandan, R. Chinraj, and M. R.
Sumalatha, “Data Filtering inWireless Sensor Networks Using Neural Networks for
Storage in Cloud,” in International Conference on Recent Trends In Information
Technology (ICRTIT), 2012.

[32] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A. Hos-
sain, “A Survey on Sensor-Cloud: Architecture, Applications, and Approaches,”
International Journal of Distributed Sensor Networks, vol. 2013, November 2012.

[33] S. Olariu, A. Wada, and L. Wilson, “Wireless sensor networks: Leveraging the
virtual infrastructure,” IEEE Network, vol. 18, no. 4, pp. 51–56, July 2004.

[34] T. Ojha, M. Khatua, and S. Misra, “Tic-Tac-Toe-Arch: a self-organising virtual ar-
chitecture for Underwater Sensor Networks,” IET Wireless Sensor Systems, vol. 3,
no. 4, pp. 307–316, April 2013.

[35] C. Zhu, H. Nicanfar, V. C. M. Leung, and L. T. Yang, “An Authenticated Trust and
Reputation Calculation and Management System for Cloud and Sensor Networks
Integration,” IEEE Transactions on Information Forensics and Security, vol. 10,
no. 1, pp. 118–131, Jan 2015.

[36] C. Zhu, V. C. M. Leung, L. T. Yang, and L. Shu, “Collaborative Location-Based
Sleep Scheduling for Wireless Sensor Networks Integratedwith Mobile Cloud Com-
puting,” IEEE Transactions on Computers, vol. 64, no. 7, pp. 1844–1856, July
2015.

[37] Y. Xu and A. Helal, “Scalable Cloud-Sensor Architecture for the Internet of
Things,” IEEE Internet of Things Journal, vol. 3, no. 3, pp. 285–298, June 2016.

[38] M. V. Nguyen and E.-N. Huh, “An Efficient Key Management for Secure Multicast
in Sensor-Cloud,” in First ACIS/JNU International Conference on Computers,
Netw, Systems and Industrial Engineering (CNSI), May 2011, pp. 3–9.

[39] A. Chandra, Y. Lee, B. M. Kim, S. Y. Maeng, S. H. Park, and S. R. Lee, “Review
on Sensor Cloud and Its Integration with Arduino Based Sensor Network,” in
International Conference on IT Convergence and Security (ICITCS), Dec 2013,
pp. 1–4.

176

References

[40] S. Bhunia, J. Pal, and N. Mukherjee, “Fuzzy Assisted Event Driven Data Col-
lection from Sensor Nodes in Sensor-Cloud Infrastructure,” in 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May
2014, pp. 635–640.

[41] S. Z. Yale and S. Zhong, “Sprite: A Simple, Cheat-Proof, Credit-Based System for
Mobile Ad-Hoc Networks,” in Proceedings of IEEE INFOCOM, 2002, pp. 1987–
1997.

[42] P. Chavali and A. Nehorai, “Managing Multi-Modal Sensor Networks Using Price
Theory,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4874–4887,
Sept 2012.

[43] J. Elias, F. Martignon, L. Chen, and E. Altman, “Joint Operator Pricing and Net-
work Selection Game in Cognitive Radio Networks: Equilibrium, System Dynamics
and Price of Anarchy,” IEEE Transactions on Vehicular Technology, vol. 62, no. 9,
pp. 4576–4589, Nov 2013.

[44] S. Li and J. Huang, “Price Differentiation for Communication Networks,”
IEEE/ACM Transactions on Networking, vol. 22, pp. 703–716, June 2014.

[45] S.-K. Ng and W.-G. Seah, “Game-Theoretic Approach for Improving Coopera-
tion in Wireless Multihop Networks,” IEEE Transactions on Systems Man and
Cybernetics Part B-Cybernetics, vol. 40, pp. 559–574, June 2010.

[46] L. Buttyan and J.-P. Hubaux, “Enforcing Service Availability in Mobile Ad-Hoc
WANs,” in First Annual Workshop on Mobile and Ad Hoc Networking and Com-
puting (MobiHOC), August 2000, pp. 87–96.

[47] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A Framework for Coop-
erative Resource Management in Mobile Cloud Computing,” IEEE Journal on
Selected Areas in Communications, vol. 31, no. 12, pp. 2685–2700, December 2013.

[48] I. A. Kash and P. B. Key, “Pricing the Cloud,” IEEE Internet Computing, vol. 20,
no. 1, pp. 36–43, Jan 2016.

[49] S. Arevalos, F. Lopez-Pires, and B. Baran, “A Comparative Evaluation of Algo-
rithms for Auction-Based Cloud Pricing Prediction,” in IEEE International Con-
ference on Cloud Engineering (IC2E), April 2016, pp. 99–108.

[50] Z. Li and M. Li, “A Hierarchical Cloud Pricing System,” in IEEE 9th World
Congress on Services (SERVICES), June 2013, pp. 403–411.

177

References

[51] H. Xu and B. Li, “Dynamic Cloud Pricing for Revenue Maximization,” IEEE
Transactions on Cloud Computing, vol. 1, pp. 158–171, July 2013.

[52] W. Wang, B. Liang, and B. Li, “Revenue maximization with dynamic auctions in
IaaS cloud markets,” in IEEE/ACM 21st International Symposium on Quality of
Service, June 2013, pp. 1–6.

[53] H. Xu and B. Li, “Maximizing revenue with dynamic cloud pricing: The infinite
horizon case,” in IEEE International Conference on Communications (ICC), June
2012, pp. 2929–2933.

[54] B. Sharma, R. Thulasiram, P. Thulasiraman, S. Garg, and R. Buyya, “Pric-
ing Cloud Compute Commodities: A Novel Financial Economic Model,” in 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), May 2012, pp. 451–457.

[55] S. Son and K. M. Sim, “A Price-and-Time-Slot-Negotiation Mechanism for Cloud
Service Reservations,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 42, no. 3, pp. 713 – 728, 2012.

[56] N. Nasiriani, C. Wang, G. Kesidis, B. Urgaonkar, L. Y. Chen, and R. Birke, “On
Fair Attribution of Costs under Peak-Based Pricing to Cloud Tenants,” in IEEE
23rd International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), Oct 2015, pp. 51–60.

[57] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Exploiting Task Elas-
ticity and Price Heterogeneity for Maximizing Cloud Computing Profits,” IEEE
Transactions on Emerging Topics in Computing, vol. PP, no. 99, pp. 1–1, 2015.

[58] Y. Chi, X. Li, X. Wang, V. C. M. Leung, and A. Shami, “A Fairness-Aware
Pricing Methodology for Revenue Enhancement in Service Cloud Infrastructure,”
IEEE Systems Journal, vol. PP, no. 99, pp. 1–12, 2015.

[59] A. Prasad and S. Rao, “A Mechanism Design Approach to Resource Procurement
in Cloud Computing,” IEEE Transactions on Computers, vol. 63, no. 1, pp. 17–30,
Jan 2014.

[60] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of Resource Provisioning Cost
in Cloud Computing,” IEEE Transactions on Services Computing, vol. 5, no. 2,
pp. 164–177, April 2012.

178

References

[61] S. Ren and M. van der Schaar, “Joint design of Dynamic Scheduling and Pricing
in wireless cloud computing,” in Proceedings of IEEE INFOCOM, April 2013, pp.
185–189.

[62] H. Roh, C. Jung, W. Lee, and D.-Z. Du, “Resource pricing game in geo-distributed
clouds,” in IEEE INFOCOM, April 2013.

[63] H. Qin, X. Wu, J. Hou, H. Wang, W. Zhang, and W. Dou, “Self-Adaptive Cloud
Pricing Strategies with Markov Prediction and Data Mining Method,” in Interna-
tional Conference on Cloud and Service Computing (CSC), Nov 2012, pp. 219–226.

[64] I. Jangjaimon and N. Tzeng, “Effective Cost Reduction for Elastic Clouds under
Spot Instance Pricing through Adaptive Checkpointing,” IEEE Transactions on
Computers, vol. PP, no. 99, pp. 1–1, 2013.

[65] V. Kantere, D. Dash, G. Francois, S. Kyriakopoulou, and A. Ailamaki, “Optimal
Service Pricing for a Cloud Cache,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, pp. 1345–1358, Sept 2011.

[66] N. Edalat, W. Xiao, C.-K. Tham, E. Keikha, and L.-L. Ong, “A price-based adap-
tive task allocation for Wireless Sensor Network,” in IEEE 6th International Con-
ference on Mobile Adhoc and Sensor Systems, Oct 2009, pp. 888–893.

[67] Z. Hui, Q. Zhi-hong, S. Da-yang, and Z. Ding-guo, “Study on Price-Driven Load
Balance in Wireless Sensor Network,” in International Conference on Information
Engineering (ICIE), vol. 1, July 2009, pp. 355–358.

[68] R. Greenwell, X. Liu, and K. Chalmers, “Pricing Intelligence as a Service for
Cloud Computing,” in IEEE 5th International Conference on Cloud Computing
Technology and Science, vol. 2, Dec 2013, pp. 244–247.

[69] A. Gohad, N. C. Narendra, and P. Ramachandran, “Monetizing the Cloud: Pricing
Model Governance,” in IEEE International Conference on Cloud Computing in
Emerging Markets (CCEM), Oct 2013, pp. 1–6.

[70] K. Nagothu, B. Kelley, M. Jamshidi, and A. Rajaee, “Persistent Net-AMI for
Microgrid Infrastructure Using Cognitive Radio on Cloud Data Centers,” IEEE
Systems Journal, vol. 6, no. 1, pp. 4–15, March 2012.

[71] X. Xu, J. Wu, G. Yang, and R. Wang, “Low-power task scheduling algorithm for
large-scale cloud data centers,” Journal of Systems Engineering and Electronics,
vol. 24, no. 5, pp. 870–878, Oct 2013.

179

References

[72] H. Wu, A. Tantawi, Y. Diao, and W. Wang, “Adaptive memory load management
in cloud data centers,” IBM Journal of Research and Development, vol. 55, no. 6,
pp. 5:1–5:10, Nov 2011.

[73] Z. Zheng, J. Wang, J. Ren, W. Hou, and J. Wang, “Least Maintenance Batch
Scheduling in Cloud Data Center Networks,” IEEE Communications Letters,
vol. 18, no. 6, pp. 901–904, June 2014.

[74] X. Yuchi and S. Shetty, “Hierarchical Random Graph Based Network Diversity
Modeling for the Cloud,” in 2016 IEEE World Congress on Services (SERVICES),
June 2016, pp. 35–38.

[75] F. Larumbe and B. Sanso, “A Tabu Search Algorithm for the Location of Data
Centers and Software Components in Green Cloud Computing Networks,” IEEE
Transactions on Cloud Computing, vol. 1, no. 1, pp. 22–35, Jan 2013.

[76] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic Consolidation of Virtual
Machines in Self-Organizing Cloud Data Centers,” IEEE Transactions on Cloud
Computing, vol. 1, no. 2, pp. 215–228, July 2013.

[77] A. Beloglazov and R. Buyya, “Managing Overloaded Hosts for Dynamic Consoli-
dation of Virtual Machines in Cloud Data Centers under Quality of Service Con-
straints,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 7,
pp. 1366–1379, July 2013.

[78] D. Bruneo, “A Stochastic Model to Investigate Data Center Performance and
QoS in IaaS Cloud Computing Systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, pp. 560–569, March 2014.

[79] Y. Hua, X. Liu, and H. Jiang, “ANTELOPE: A Semantic-Aware Data Cube
Scheme for Cloud Data Center Networks,” IEEE Transactions on Computers,
vol. 63, no. 9, pp. 2146–2159, Sept 2014.

[80] C. Assi, S. Ayoubi, S. Sebbah, and K. Shaban, “Towards Scalable Traffic Manage-
ment in Cloud Data Centers,” IEEE Transactions on Communications, vol. 62,
no. 3, pp. 1033–1045, March 2014.

[81] W. Zhang, Y. Wen, and H.-H. Chen, “Toward transcoding as a service: energy-
efficient offloading policy for green mobile cloud,” IEEE Network, vol. 28, no. 6,
pp. 67–73, Nov 2014.

180

References

[82] H. Liang, L. Cai, D. Huang, X. Shen, and D. Peng, “An SMDP-Based Service
Model for Interdomain Resource Allocation in Mobile Cloud Networks,” IEEE
Transactions on Vehicular Technology, vol. 61, no. 5, pp. 2222–2232, Jun 2012.

[83] H. Li, M. Dong, K. Ota, and M. Guo, “Pricing and Repurchasing for Big Data Pro-
cessing in Multi-Clouds,” IEEE Transactions on Emerging Topics in Computing,
vol. 4, no. 2, pp. 266–277, April 2016.

[84] B. Sharma, R. K. Thulasiram, P. Thulasiraman, and R. Buyya, “Clabacus: A
Risk-Adjusted Cloud Resources Pricing Model Using Financial Option Theory,”
IEEE Transactions on Cloud Computing, vol. 3, no. 3, pp. 332–344, July 2015.

[85] M. Aazam, E. N. Huh, M. St-Hilaire, C. H. Lung, and I. Lambadaris, “Cloud
Customer’s Historical Record Based Resource Pricing,” IEEE Transactions on
Parallel and Distributed Systems, no. 7, pp. 1929–1940, July 2016.

[86] P. Massonet, S. Dupont, A. Michot, A. Levin, and M. Villari, “An architecture
for securing federated cloud networks with Service Function Chaining,” in IEEE
Symposium on Computers and Communication (ISCC), June 2016, pp. 38–43.

[87] M. Filer, J. Gaudette, M. Ghobadi, R. Mahajan, T. Issenhuth, B. Klinkers, and
J. Cox, “Elastic optical networking in the microsoft cloud,” IEEE/OSA Journal of
Optical Communications and Networking, vol. 8, no. 7, pp. A45–A54, July 2016.

[88] L. Jiao, A. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed online resource
allocation in multi-tier distributed cloud networks,” in IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2016, pp. 333–342.

[89] I. Demydov, O. Lavriv, Z. Kharkhalis, and M. M. El-Hatri, “Concept of the mi-
grating firewall to scalable cloud networks,” in 13th International Conference on
Modern Problems of Radio Engineering, Telecommunications and Computer Sci-
ence (TCSET), Feb 2016, pp. 643–645.

[90] S. Murugesan and I. Bojanova, Cloud Network and I/O Virtualization. Wiley-
IEEE Press, 2016, ch. S. Murugesan and I. Bojanova, p. 744. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7493824

[91] F. Salim, M. D. Pena, Y. Petrov, N. Sony, B. Wu, and A. A. Saad, “EnviS Tag,
Scan, View: A Location-Based App for Visualizing Spatio-temporal Data from
Sensor Cloud,” in IEEE 15th International Conference on Mobile Data Manage-
ment, vol. 1, July 2014, pp. 329–332.

181

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7493824

References

[92] A. A. Chandra, Y. Lee, B. M. Kim, S. Y. Maeng, S. H. Park, and S. R. Lee,
“Review on Sensor Cloud and Its Integration with Arduino Based Sensor Network,”
in International Conference on IT Convergence and Security (ICITCS), Dec 2013,
pp. 1–4.

[93] B. K. Sen, S. Khatua, and R. K. Das, “Target coverage using a collaborative plat-
form for sensor cloud,” in IEEE International Conference on Advanced Networks
and Telecommuncations Systems (ANTS), Dec 2015, pp. 1–6.

[94] A. Sen and S. Madria, “A Risk Assessment Framework for Wireless Sensor Net-
works in a Sensor Cloud,” in IEEE 16th International Conference on Mobile Data
Management, vol. 2, June 2015, pp. 38–41.

[95] S. Saha, “Secure sensor data management model in a sensor - cloud integration
environment,” in Applications and Innovations in Mobile Computing (AIMoC),
Feb 2015, pp. 158–163.

[96] N. Kedia, “Water quality monitoring for rural areas- a Sensor Cloud based eco-
nomical project,” in 1st International Conference on Next Generation Computing
Technologies (NGCT), Sept 2015, pp. 50–54.

[97] L. Neto, J. Reis, D. Guimaraes, and G. Goncalves, “Sensor cloud: SmartCompo-
nent framework for reconfigurable diagnostics in intelligent manufacturing environ-
ments,” in IEEE 13th International Conference on Industrial Informatics (INDIN),
July 2015, pp. 1706–1711.

[98] M. Hirafuji, H. Yoichi, T. Kiura, K. Matsumoto, T. Fukatsu, K. Tanaka,
Y. Shibuya, A. Itoh, H. Nesumi, N. Hoshi, S. Ninomiya, J. Adinarayana, D. Sud-
harsan, Y. Saito, K. Kobayashi, and T. Suzuki, “Creating high-performance/low-
cost ambient sensor cloud system using OpenFS (Open Field Server) for high-
throughput phenotyping,” in Proceedings of SICE Annual Conference (SICE), Sept
2011, pp. 2090–2092.

[99] C. Srimathi, S.-H. Park, and N. Rajesh, “Proposed framework for underwater
sensor cloud for environmental monitoring,” in 5th International Conference on
Ubiquitous and Future Networks (ICUFN), July 2013, pp. 104–109.

[100] A. Kothari, V. Boddula, L. Ramaswamy, and N. Abolhassani, “DQS-cloud: A
data quality-aware autonomic cloud for sensor services,” in International Con-
ference on Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), Oct 2014, pp. 295–303.

182

References

[101] H. Dong, Q. Hao, T. Zhang, and B. Zhang, “Formal Discussion on Relationship
between Virtualization and Cloud Computing,” in 11th International Conference
on Parallel and Distributed Computing, Applications and Technologies, 2010.

[102] S. Heitz, P. Matgen, G. Schumann, and L. Pfister, “Active and Passive Microwave
Sensors as a Tool to Monitor Soil Moisture Over Winter,” in IEEE International
Geoscience and Remote Sensing Symposium, vol. 2, July 2008, pp. II–773–II–776.

[103] X. Tian and C. Ji, “Bounding the Performance of Dynamic Channel Allocation
with QoS Provisioning for Distributed Admission Control in Wireless Networks,”
IEEE Transactions on Vehicular Technology, vol. 50, no. 2, pp. 388–397, March
2001.

[104] S. Bera, S. Misra, and D. Chatterjee, “C2C: Community-Based Cooperative En-
ergy Consumption in Smart Grid,” IEEE Transactions on Smart Grid, vol. PP,
no. 99, pp. 1–1, 2017.

[105] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-Defined
WSN Management System for IoT Applications,” IEEE Systems Journal, vol. PP,
no. 99, pp. 1–8, 2016.

[106] A. Mondal, S. Misra, and M. S. Obaidat, “Distributed Home Energy Management
System With Storage in Smart Grid Using Game Theory,” IEEE Systems Journal,
vol. PP, no. 99, pp. 1–10, 2015.

[107] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed clustering
approach for ad hoc sensor networks,” IEEE Transactions on Mobile Computing,
vol. 3, no. 4, pp. 366–379, Oct 2004.

[108] Y. C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, “Sensing-Throughput
Tradeoff for Cognitive Radio Networks,” IEEE Transactions on Wireless Commu-
nications, vol. 7, no. 4, pp. 1326–1337, April 2008.

[109] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated
adaptive sleeping for wireless sensor networks,” IEEE/ACM Transactions on Net-
working, vol. 12, no. 3, pp. 493–506, June 2004.

[110] M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick,
S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol
properties, precipitable water, and profiles of temperature and water vapor from

183

References

MODIS,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 2,
pp. 442–458, Feb 2003.

[111] M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of
cloud, aerosol, and water vapor properties from the moderate resolution imaging
spectrometer (MODIS),” IEEE Transactions on Geoscience and Remote Sensing,
vol. 30, no. 1, pp. 2–27, Jan 1992.

[112] R. K. Lam, D.-M. Chiu, and J. C. Lui, “On the Access Pricing and Network
Scaling Issues of Wireless Mesh Networks,” IEEE Transactions on Computers,
vol. 56, no. 11, pp. 1456–1469, 2007.

[113] W. Liu, L. Cui, and X. Niu, “EasiTPQ: QoS-Based Topology Control in Wireless
Sensor Network.” Signal Processing Systems, vol. 51, no. 2, pp. 173–181, 2008.

[114] Y.-L. Lai and C. J., “A Cloud-Storage RFID Location Tracking System,” IEEE
Transactions on Magnetics, vol. 50, no. 7, pp. 1–4, July 2014.

[115] A. Zhou and B. He, “Transformation-Based Monetary Cost Optimizations for
Workflows in the Cloud,” IEEE Transactions on Cloud Computing, vol. 2, no. 1,
pp. 85–98, March 2014.

[116] J. Shin, M. Jo, J. Lee, and D. Lee, “Strategic Management of Cloud Comput-
ing Services: Focusing on Consumer Adoption Behavior,” IEEE Transactions on
Engineering Management, vol. PP, pp. 1–9, 2014.

[117] Y. Feng, B. Li, and B. Li, “Price Competition in an Oligopoly Market with Multiple
IaaS Cloud Providers,” IEEE Transactions on Computers, vol. 63, no. 1, pp. 59–73,
2014.

[118] H. Lu, X. Wu, W. Zhang, and J. Liu, “Optimal Pricing of Multi-model Hybrid
System for PaaS Cloud Computing,” in International Conference on Cloud and
Service Computing (CSC), Nov 2012, pp. 227–231.

[119] D. Ardagna, B. Panicucci, and M. Passacantando, “Generalized Nash Equilibria
for the Service Provisioning Problem in Cloud Systems,” IEEE Transactions on
Services Computing, vol. 6, no. 4, pp. 429–442, 2013.

[120] J. Musacchio and J. Walrand, “WiFi access point pricing as a dynamic game,”
IEEE/ACM Trans. Networking, vol. 2, pp. 289–301, 2006.

184

References

[121] K. Cheung, H. So, W.-K. Ma, and Y. Chan, “Received signal strength based
mobile positioning via constrained weighted least squares,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, (ICASSP)., vol. 5, April
2003.

[122] M. Hossain, P. Atrey, and A. Saddik, “Context-aware QoI computation in multi-
sensor systems,” in 5th IEEE Intl Conf on Mobile Ad Hoc and Sensor Systems,
2008. MASS 2008., Sept 2008, pp. 736–741.

[123] E. Ciftcioglu, A. Yener, and M. Neely, “Maximizing Quality of Information From
Multiple Sensor Devices: The Exploration vs Exploitation Tradeoff,” IEEE Jour-
nal on Selected Topics in Signal Processing, vol. 7, no. 5, pp. 883–894, Oct 2013.

[124] S. Sheng and R. Gao, “Structural dynamics-based sensor placement strategy for
high quality sensing,” in Proceedings of IEEE Sensors, 2004., Oct 2004, pp. 642–
645 vol.2.

[125] D. Fudenberg and J. Tirole, Game Theory, Chapter 8. MIT Press, 1991.

[126] R. Wolff, Stochastic Modelling and the Theory of Queues. Prentice-Hall, 1989.

[127] X. Yu, “Distributed cache updating for the dynamic source routing protocol,”
IEEE Transactions on Mobile Computing, vol. 5, pp. 609–626, June 2006.

[128] S. Adibi and G. Agnew, “Multilayer flavoured dynamic source routing in mobile
ad-hoc networks,” IET Comms, vol. 2, May 2008.

[129] S. Madria, V. Kumar, and R. Dalvi, “Sensor Cloud: A Cloud of Virtual Sensors,”
Software, IEEE, vol. 31, no. 2, pp. 70–77, Mar 2014.

[130] R. C. Ben-Yashar and S. I. Nitzan, “The Optimal Decision Rule for Fixed-
Size Committees in Dichotomous Choice Situations: The General Result,”
International Economic Review, vol. 38, no. 1, pp. pp. 175–186, 1997. [Online].
Available: http://www.jstor.org/stable/2527413

[131] (2012) Cultivating a Crystal Ball for Data Center Availabil-
ity and Performance. Emerson Network Power. [Online]. Avail-
able: http://www.emersonnetworkpower.com/documenta-tion/en-us/solutions/
cio-topics/documents/cultivating-a-crystal-ball-for-data-center-playbook.pdf

185

http://www.jstor.org/stable/2527413
http://www.emersonnetworkpower.com/documenta- tion/en-us/solutions/cio-topics/documents/cultivating-a-crystal-ball-for-data-center-playbook.pdf
http://www.emersonnetworkpower.com/documenta- tion/en-us/solutions/cio-topics/documents/cultivating-a-crystal-ball-for-data-center-playbook.pdf

References

[132] G. Leopold. (2014, April) Survey Finds Disconnect Between Big Data and
Decision-Making. [Online]. Available: http://www.datanami.com/2014/04/02/
survey-finds-disconnect-between-big-data-and-decision-making/

[133] E. Baralis, L. Cagliero, and P. Garza, “EnBay: A Novel Pattern-Based Bayesian
Classifier,” IEEE Transactions on Knowledge and Data Engineering, vol. 25,
no. 12, pp. 2780 – 2795, December 2013.

[134] C. Ordonez and S. K. Pitchaimalai, “Bayesian Classifiers Programmed in SQL,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 1, pp. 139 –
144, January 2010.

[135] B. P. Brownstein, “Pareto Optimality, External Benefits and Public Goods: A
Subjectivist Approach,” The Journal of Libertarian Studies, vol. 4, no. 1, 1980.

[136] Z. He, G. Yen, and J. Zhang, “Fuzzy-Based Pareto Optimality for Many-Objective
Evolutionary Algorithms,” IEEE Transactions on Evolutionary Computation,
vol. 18, no. 2, pp. 269–285, April 2014.

[137] C. Borgers, Mathematics of Social Choice: Voting, Compensation, and Division.
Society for Industrial and Applied Mathematcs, 2010.

[138] X. Zhang, W. Dou, J. Pei, S. Nepal, C. Yang, C. Liu, and J. Chen, “Proximity-
Aware Local-Recoding Anonymization with MapReduce for Scalable Big Data Pri-
vacy Preservation in Cloud,” IEEE Transactions on Computers, vol. 64, no. 8, pp.
2293–2307, Aug 2015.

[139] L. Gu, D. Zeng, P. Li, and S. Guo, “Cost Minimization for Big Data Process-
ing in Geo-Distributed Data Centers,” IEEE Transactions on Emerging Topics in
Computing, vol. 2, no. 3, pp. 314–323, Sept 2014.

[140] W. Yu, Y. Wang, and X. Que, “Design and Evaluation of Network-Levitated Merge
for Hadoop Acceleration,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 3, pp. 602–611, March 2014.

[141] D. Bouyssou, T. Marchant, and P. Perny, Decision-making Process: Concepts and
Methods. Wiley Online Library, Jan 2010.

[142] J. Geanakoplos, “Three Brief Proofs of ARROW’S IMPOSSIBILITY THEO-
REM,” Cowles Foundation For Research In Economics, Yale University 2001.

186

http://www.datanami.com/2014/04/02/survey-finds-disconnect-between-big-data-and-decision-making/
http://www.datanami.com/2014/04/02/survey-finds-disconnect-between-big-data-and-decision-making/

References

[143] W. L. Yeow, C. K. Tham, and W. C. L. Wong, “Energy Efficient Multiple Target
Tracking in Wireless Sensor Networks,” IEEE Transactions on Vehicular Technol-
ogy, vol. 56, pp. 918 – 928, 2007.

[144] B. Jiang, B. Ravindran, and H. Cho, “Probability-Based Prediction and Sleep
Scheduling for Energy-Efficient Target Tracking in Sensor Networks,” IEEE Trans-
actions on Mobile Computing, vol. 12, no. 4, pp. 735–747, Apr 2013.

187

Publications out of this work

Patents

• S. Chatterjee, A. Roy, S. K. Roy, S. Misra, M. S. Bhogal, and R. Daga, "Sensory
network for persuasive and pervasive virtualization of physical sensors into render-
able time service”, Indian patent filed in November 2014 (Ref: 1145/KOL/2014).

Journal

• S. Chatterjee, S. Misra, and S. U. Khan, “Optimal Data Center Scheduling for
Quality of Service Management in Sensor-cloud,” IEEE Transactions on Cloud
Computing, 2015.

• S. Chatterjee, R. Ladia, and S. Misra, “A Dynamic Optimal Pricing Scheme
for Heterogeneous Service-Oriented Architecture for Sensor-cloud Infrastructure,”
IEEE Transactions on Services Computing, 2015.

• S. Misra, A. Singh, S. Chatterjee, and A. K. Mandal, “QoS-Aware Sensor Allo-
cation for Target Tracking in Sensor-Cloud,” Ad Hoc Networks, Elsevier, 2015.

• S. Chatterjee, and S. Misra, “Sensor-Target Mapping in Presence of Overlapping
Coverage: Tracking Using Sensor-Cloud,” IEEE Communication Letters, 2014.

• S. Misra, S. Chatterjee, and M. S. Obaidat, “On Theoretical Modeling of Sensor-
Cloud: A Paradigm Shift From Wireless Sensor Network,” IEEE Systems Journal,
2014.

Conference

• S. Chatterjee, and S. Misra, “Adaptive Data Caching for Provisioning Sensors-
As-A-Service,” IEEE BlackSeaCom, 2016.

• S. Chatterjee, and S. Misra, “QoS Estimation and Selection of CSP in Oligopoly
Environment for Internet of Things,” IEEE WCNC, 2016.

• S. Chatterjee, and S. Misra, “Optimal Composition of a Virtual Sensor for Effi-
cient Virtualization Within Sensor-cloud,” IEEE ICC, 2015.

189

References

• S. Chatterjee, S. Sarkar, and S. Misra, “Energy-Efficient Data Transmission
in Sensor-Cloud,” International Conference on Applications and Innovations in
Mobile Computing (AIMoC), 2015.

• S. Chatterjee, and S. Misra, “Dynamic and Adaptive Data Caching Mechanism
for Virtualization within Sensor-Cloud,” IEEE ANTS, 2014.

190

BIO-DATA

1. Personal Details

• Name: Subarna Chatterjee

• Roll No.: 13IT91P01

• Father’s Name: Mr. Subhash Chatterjee

• Date of Birth: February 27, 1990

• Permanent Address: S-13, Cluster - III, Purbachal, Salt Lake, Kolkata -
700097, West Bengal, India

2. Academic Qualification:

• Jul. 2013 – Present: Ph.D. Research Scholar at Indian Institute of Technology
Kharagpur, India.

• Aug. 2008 – Jul. 2012 : B. Tech. in Computer Science and Engineering from
Institute of Engineering and Management, Kolkata, India

3. Research Experience:

• Dec. 2015 – Present: Tata Consultancy Services Research Scholar, Indian
Institute of Technology Kharagpur, India.

• Apr. 2013 – Dec. 2014 : Junior Research Fellow (JRF), Indian Institute of
Technology Kharagpur, India.

4. Patents:

(a) S. Chatterjee, A. Roy, S. K. Roy, S. Misra, M. S. Bhogal, and R. Daga,
"Sensory network for persuasive and pervasive virtualization of physical sen-
sors into renderable time service”, Indian patent filed in November 2014 (Ref:
1145/KOL/2014).

5. Journal Publications:

(a) S. Sarkar, S. Chatterjee, and S. Misra, “Analysis of Fog Computing: The
Convergence of Cloud Computing to Green Computing,” IEEE Transactions
on Cloud Computing, 2015.

(b) S. Chatterjee, S. Misra, and S. U. Khan, “Optimal Data Center Scheduling
for Quality of Service Management in Sensor-cloud,” IEEE Transactions on
Cloud Computing, 2015.

(c) S. Chatterjee, R. Ladia, and S. Misra, “A Dynamic Optimal Pricing Scheme
for Heterogeneous Service-Oriented Architecture for Sensor-cloud Infrastruc-
ture,” IEEE Transactions on Services Computing, 2015.

(d) S. Misra, A. Singh, S. Chatterjee, and A. K. Mandal, “QoS-Aware Sensor
Allocation for Target Tracking in Sensor-Cloud,” Ad Hoc Networks, Elsevier,
2015.

(e) S. Sarkar, S. Chatterjee, and S. Misra, “Evacuation and Emergency Man-
agement Using a Federated Cloud,” IEEE Cloud Computing Magazine, 2015.

(f) S. Misra, and S. Chatterjee, “Social Choice Considerations in Cloud-Assisted
WBAN Architecture for Post-Disaster Healthcare: Data Aggregation and
Channelization,” Information Sciences, Elsevier, 2014.

(g) S. Chatterjee, and S. Misra, “Sensor-Target Mapping in Presence of Over-
lapping Coverage: Tracking Using Sensor-Cloud,” IEEE Communication Let-
ters, 2014.

(h) S. Misra, A. Singh, S. Chatterjee, and M. S. Obaidat, “Mils-Cloud: A
Sensor-Cloud Based Architecture for the Integration of Military Tri-Services
Operations and Decision Making,” IEEE Systems Journal, 2014.

(i) S. Misra, S. Chatterjee, and M. S. Obaidat, “On Theoretical Modeling
of Sensor-Cloud: A Paradigm Shift From Wireless Sensor Network,” IEEE
Systems Journal, 2014.

6. Conference Publications:

(a) S. Chatterjee, and S. Misra, “Adaptive Data Caching for Provisioning
Sensors-As-A-Service,” IEEE BlackSeaCom, Varna, Bulgaria, 2016.

(b) S. Chatterjee, and S. Misra, “QoS Estimation and Selection of CSP in
Oligopoly Environment for Internet of Things,” IEEE WCNC, Doha, Qatar,
2016.

(c) S. Chatterjee, and S. Misra, “Optimal Composition of a Virtual Sensor
for Efficient Virtualization Within Sensor-cloud,” IEEE ICC, London, U.K.,
2015.

(d) S. Chatterjee, and S. Misra, “Quantification of Node Misbehavior in Wire-
less Sensor Networks: A Social Choice-Based Approach,” IEEE ICC Work-
shop, London, U.K., 2015.

(e) S. Chatterjee, S. Sarkar, and S. Misra, “Energy-Efficient Data Transmission
in Sensor-Cloud,” International Conference on Applications and Innovations
in Mobile Computing (AIMoC), Kolkata, India, 2015.

(f) P. V. S. R. Teja, S. Chatterjee, S. N. Das, and S. Misra, “Two-Level Map-
ping to Mitigate Congestion in Machine to Machine (M2M) Cloud,” Inter-
national Conference on Applications and Innovations in Mobile Computing
(AIMoC), Kolkata, India, 2015.

(g) S. Chatterjee, and S. Misra, “Dynamic and Adaptive Data Caching Mecha-
nism for Virtualization within Sensor-Cloud,” IEEE ANTS, New Delhi, India,
2014.

7. Fellowships and Scholarships:

(a) Awarded the Facebook Grace Hopper Scholarship (one of the 50 recip-
ients worldwide), 2016

(b) Awarded the N2 Women Young Researcher Fellowship through ACM
SIGMOBILE program to attend IEEE WCNC, 2016

(c) Awarded the Student Scholarship to attend theGrace Hopper Celebra-
tion of Women in Computing India (GHCI), 2015 conference

(d) Awarded Google Anita Borg Fellowship, Asia Pacific, (2015).

(e) Awarded Tata Consultancy Service (TCS) Research Fellowship (2014-
2017).

(f) Awarded Fellowship from ISIRD, IIT Kharagpur (2013-2014).

(g) Awarded Merit scholarship by Government of India for exemplary per-
formance in Higher Secondary Examination.

(h) Awarded Merit Scholarship from South Eastern Railway for exemplary
performance in Secondary and Higher Secondary examinations.

(i) Nominated for Merit scholarship by Government of India Ministry of
Human Resource Development Department of Higher Education for
exemplary performance in Secondary Examination.

8. Awards and Certifications:

(a) Selected as one of the Most Qualified Young Scientist to attend the
Heidelberg Laureate Forum, 2016.

(b) Selected as the Leader of the Google Anita Borg Scholarship Com-
munity (solitary from the country and one of the seven across the world)
and invited to attend Google I/O 2016.

(c) Awarded as theWinner in Hackathon in Robotics atGoogle Shanghai,
2015.

(d) Awarded a fully-sponsored Travel Grant by Ministry of Human Re-
source (MHRD) for presenting in a listed conference - IEEE ICC, 2015.

(e) Awarded certificate of appreciation at ComSoc Student Competition
“Communications Technology Changing the World”, 2014 for being ranked
among the top 9 projects.

(f) Awarded Second Runners Up in Samsung Innovation Award, 2014.

(g) Awarded certificate of Merit and certificate of participation fromWest
Bengal Renewable Energy Development Agency (WBREDA) in as-
sociation with Vivekananda Institute of Environment and Manage-
ment, Kolkata for being Second Runners Up in a model making compe-
tition.

(h) Awarded Merit Award from United Bank of India Employees’ Co-
operative Credit Society Ltd for unparallel performance in Secondary
and Higher Secondary Examination.

9. Professional Affiliations

• Graduate student member, IEEE

• Graduate student member, ComSoc

• Graduate student member, IEEE Women in Engineering

	Approval
	Certificate
	Declaration
	Dedication
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.1.1 Actors of Sensor-cloud
	1.1.2 Architecture of Sensor-cloud
	1.1.3 Views of Sensor-cloud

	1.2 Scope and Objectives
	1.3 Contribution of the Dissertation
	1.4 Organization of the Dissertation

	2 Literature Survey
	2.1 Evolution of Sensor-cloud
	2.2 Pricing in Sensor-cloud
	2.3 Networking in Sensor-cloud
	2.4 Implementation Models of Sensor-cloud
	2.5 Summary

	3 Theoretical Characterization of Virtualization and Experimental Justification for a Paradigm Shift
	3.1 Characterization of Virtualization
	3.2 Experimental Justification for Paradigm Shift
	3.2.1 Performance Metrics
	3.2.2 Explanation of Parameters
	3.2.3 Approach Taken
	3.2.4 Performance Analysis

	3.3 Summary

	4 Dynamic and Adaptive Data Caching Within Sensor-cloud
	4.1 Contributions of the Chapter
	4.2 Proposed Architecture for Caching
	4.2.1 Rationale behind Two Cache Units

	4.3 Model of the External Cache
	4.4 Model of the Internal Cache
	4.5 Theoretical Analysis
	4.6 Performance Evaluation
	4.6.1 Explanation of Parameters
	4.6.2 Approach Taken
	4.6.3 Performance Analysis

	4.7 Summary

	5 Dynamic and Optimal Pricing Scheme for Se-aaS
	5.1 Contributions of the Chapter
	5.2 Problem Scenario
	5.3 System Model
	5.3.1 Assumptions of the Model
	5.3.2 pH: Pricing attributed to Hardware
	5.3.3 pI: Pricing attributed to Infrastructure

	5.4 Experimental Results
	5.4.1 Explanation of Parameters
	5.4.2 Analysis of pH
	5.4.3 Analysis of pI

	5.5 Summary

	6 Optimal Data Center Scheduling for QoS Management in Sensor-cloud
	6.1 Contributions of the Chapter
	6.2 Problem Description
	6.3 Formal Definition of the Problem
	6.4 System Model
	6.4.1 Optimal Decision Rule
	6.4.2 Proposed Model

	6.5 Analytical Results
	6.6 Performance Evaluation
	6.6.1 Explanation of Parameters
	6.6.2 Single Application Scenario
	6.6.3 Multiple Application Scenario
	6.6.4 Complexity Analysis

	6.7 Summary

	7 Development of a Working Prototype of Sensor-cloud Infrastructure
	7.1 Limitations of Sensor-cloud
	7.2 Contributions of this Chapter
	7.3 Design of Big-Sensor-Cloud Infrastructure
	7.4 Architecture of Big-Sensor-Cloud Infrastructure
	7.5 Implementation of Big-Sensor-Cloud Infrastructure
	7.6 Performance Evaluation
	7.6.1 Explanation of Parameters
	7.6.2 Bottleneck Analysis of Existing Sensor-cloud
	7.6.3 Performance Analysis of BSCI

	7.7 Summary

	8 Application Specific Analysis of Sensor-cloud Infrastructure: Target Tracking
	8.1 Contribution of the Chapter
	8.2 S-DMA: Social choice based Dynamic Mapping Algorithm
	8.2.1 Detection of Overlapping Coverage
	8.2.2 Calculation of `Eligibility' Factor of a Sensor Node
	8.2.3 Computation of Nodal Preference
	8.2.4 Social Choice Aggregation

	8.3 Analytical Results
	8.4 Conclusion

	9 Summary and Conclusion
	9.1 Summary of the dissertation
	9.2 Contribution of Our Work
	9.3 Future Scope of Work

	References
	Publications

