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Abstract—This work performs a rigorous, comparative anal-
ysis of the fog computing paradigm and the conventional cloud
computing paradigm in the context of the Internet of Things
(IoT), by mathematically formulating the parameters and char-
acteristics of fog computing – one of the first attempts of
its kind. With the rapid increase in the number of Internet-
connected devices, the increased demand of real-time, low-latency
services is proving to be challenging for the traditional cloud
computing framework. Also, our irreplaceable dependency on
cloud computing demands the cloud data centers (DCs) always
to be up and running which exhausts huge amount of power and
yield tons of carbon dioxide (CO2) gas. In this work, we assess
the applicability of the newly proposed fog computing paradigm
to serve the demands of the latency-sensitive applications in
the context of IoT. We model the fog computing paradigm by
mathematically characterizing the fog computing network in
terms of power consumption, service latency, CO2 emission,
and cost, and evaluating its performance for an environment
with high number of Internet-connected devices demanding real-
time service. A case study is performed with traffic generated
from the 100 highest populated cities being served by eight
geographically distributed DCs. Results show that as the number
of applications demanding real-time service increases, the fog
computing paradigm outperforms traditional cloud computing.
For an environment with 50% applications requesting for in-
stantaneous, real-time services, the overall service latency for
fog computing is noted to decrease by 50.09%. However, it is
mentionworthy that for an environment with less percentage of
applications demanding for low-latency services, fog computing
is observed to be an overhead compared to the traditional cloud
computing. Therefore, the work shows that in the context of IoT,
with high number of latency-sensitive applications fog computing
outperforms cloud computing.

Index Terms—Fog computing, Cloud computing, Internet of
things (IoT), Service latency, Power consumption, Carbon-dioxide
emission

I. INTRODUCTION

Recent advancements in computer technologies have led
to the conceptualization, development, and implementation of
cloud computing systems. From its inception, cloud computing
has gained widespread popularity due to its applicability in
diverse, widespread domains. Cloud computing systems are
generally based on data centric networks (DCNs), which are
treated as the sole, monopolized hubs responsible for com-
putation and storage. For contemporary cloud-based systems,

all service requests and resource demands are analyzed and
processed within the data centers (DCs). However, with the
steep rise in the number of Internet-connected devices and in
the light of the emerging technology of the Internet of things
(IoT), the amount of data to be handled by the cloud DCs
is paramount. In 2012, global commercialization of IoT-based
application systems generated a revenue of $4.8 trillon [1].
It is statistically estimated that by 2015, around 25 billion
autonomous devices will be connected to the Internet. Cisco
estimates that due to IoT, the global corporate profits will
also increase approximately by 21% [2]. Also, the cloud DCs
exhaust massive amount of energy leading to the emission of
enormous amount of greenhouse gases (GHGs), especially car-
bon dioxide (CO2). This takes a deep toll on the environment.

The technology of IoT is reliant on cloud computing. Data
from the billions of Internet-connected devices are voluminous
and demand to be processed within the cloud DCs. Most
of these IoT infrastructures, such as smart vehicular traffic
management systems, smart driving and car parking systems,
and smart grids are observed to demand real-time, low-latency
services from the service providers. Since conventional cloud
computing involves processing, computation, and storage of
the data only within DCs, the massive data traffic generated
from the IoT devices is anticipated to experience a huge
network bottleneck and, in turn, high service latency and poor
Quality of Service (QoS). Moreover, in order to process and
serve this high number of requests the DCs are required to
be up and running around the clock which results in the
consumption of enormous amount of energy and massive
emission of CO2.

In this work, we analyze the suitability of a recent comput-
ing paradigm – fog computing to serve the demands of the real-
time, latency-sensitive applications in the context of IoT. Fog
(From cOre to edGe) computing, a term coined by Cisco in
2012 [3], is a distributed computing paradigm, that empowers
the network devices at different hierarchical levels with various
degrees of computational and storage capability. These devices
are equipped with an ‘intelligence’ which allows them to ex-
amine whether an application request requires the intervention
of the cloud computing tier or not. The idea is to serve the
requests which demand real-time, low-latency services (e.g.
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live streaming, smart traffic monitoring, smart parking etc.) by
the fog computing devices and the connected work stations and
small-scale storage units. However, the requests which demand
semi-permanent and permanent storage or require extensive
analysis involving historical data-sets (e.g. social media data,
photos, videos, medical history, data backups etc.), these
devices only act as routers or gateways to redirect the requests
to the core cloud computing framework. The focus of this work
is to assess the suitability of fog computing in the context
of real-time service requests, and compare its performance
against the traditional cloud computing frameworks.

Judging by the different types of applications served by fog
and cloud, it is clear that fog computing is not a replacement
of cloud computing, rather these two technologies complement
one another. The complementary functions of cloud and fog
enable the end-users to experience a new breed of computing
technology that serves the requirements of the real-time, low-
latency IoT-applications running at the network edge, and also
supports complex analysis and long-term storage of data at the
core cloud computing framework. The work mathematically
characterizes fog computing in terms of power consumption,
service latency, and we investigate the eco-friendliness of the
technology as well.

A. Motivation

The primary storage and computing centers of the cloud
computing architecture are the geographically scattered DCs
which communicate among themselves through the DCNs.
These DCNs are huge consumers of energy and, in turn,
generate and emit heavy high amount of CO2 gas. Motivated
by the design of the mathematical model for cloud networks
by Zhang et al. [4], in this work, we develop the network
model for the fog paradigm and assess its performance while
supporting the IoT. With the increase in the number of the
IoT devices demanding real-time services from the service
providers, tradition cloud computing framework is expected
to face the following challenges:
(i) The International Data Corporation (IDC) forecast says

that the worldwide market for IoT-based technologies and
solutions will grow from $1.9 trillion in 2013 to $7.1
trillion in 2020 [5]. With this increase in the number
IoT devices, the DCNs encounters a heavy network
traffic which affects the service latency by a great extent,
and consequently, applications requesting for real-time
services would experience a deterioration in the QoS.

(ii) The U.S. Environmental Protection Agency (EPA) report
[6] stated that in the year of 2006, the DCs of U.S.
consumed about 61 billion kilowatt-hours of power with
a total financial expenditure worth $4.5 billion. It was
also observed that in 2007, 30 million worldwide servers
were accounted for 100 TWh of the world’s energy
consumption at a cost of $9 billion which is expected
to rise upto 200 TWh in the next few years [6], [7].
Therefore, it is important to exempt the cloud DCs from
being bombarded with service requests, and serve a part
of those requests from the network edge. This would relax
the load experienced by the DCs and also would serve

the latency-sensitive apllication requests in a better way
with increased QoS.

(iii) Moreover, with the cloud DCs made to run during around
the clock irrespective of the traffic rate, the amount
of GHGs emitted remains unreasonably high. Presently,
the planet’s annual electricity consumption Information-
Communications-Technologies (ICT) ecosystem is about
1, 500 TWh – equal to the total electricity produced by
Japan and Germany [8]. Controlling the traffic which
requires to be directed to the core cloud computing
module would thereby reduce the effective up-time of
the DCs. This would help in keeping down the amount
of GHGs generated by the DCs and help system to be
more eco-friendly.

B. Contribution

We discuss the contributions of our work in this subsection.
As mentioned earlier, fog computing is not a substitution
of cloud computing; rather in this work, we analyze the
suitability of fog computing combined with the traditional
cloud computing in supporting the ever-increasing demands
of the latency-hungry IoT-based applications. The primary
contributions of this work are listed below.

(i) Initially, this work constructs the network model of fog
computing – one of the first attempts of its kind in this
direction. We define the different network devices and
networking links within the fog computing architecture
and explain the traffic exchange pattern for the same.

(ii) Based on this model, the work mathematically character-
izes the performance metrics of fog computing in terms
of the service latency, power consumption, CO2 emis-
sion for different renewable and non-renewable energy
resources, and the corresponding costs incurred.

(iii) The work also performs a fair and equitable comparative
study for both cloud and fog computing systems. We
analyze the suitability of the fog computing architecture
to support the demands of IoT devices and while serving
latency-sensitive applications.

C. Paper Organization

The rest of the paper is organized as follows. Section II
describes the work done so far on this domain. In Section III,
the detailed architecture of the of the fog computing paradigm
is presented. We discuss the details of the fog networking
model in Section IV. The performance metrics are presented
and modeled in Section V. Section VI presents experimental
setup for the case study. In Section VII, the performance
evaluation of fog computing paradigm is performed and a
comparative study of both fog and cloud models is presented.
Finally, the work is concluded in Section VIII.

II. RELATED WORK

In this Section, we present and discuss the prior research
works which were done in this domain.
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A. Internet of Things

Recent research has spawned the concept of IoT [9], [10]
that connects billions of things across the globe to the Internet
and enables Machine to Machine (M2M) communication [11]
among these devices. Thus, IoT framework is a dynamic and
persuasive platform for data storage, computation, and man-
agement [12]. Contemporary devices or Internet based systems
are gradually converging towards IoT [13]. It is estimated and
reported by Cisco that, by 2020, around 50 billion devices
will be connected to the Internet [3]. Thus, by 2020, it is
estimated that a large number of applications will be required
to be processed and served through the technology of IoT [14],
[15]. Analyzing contemporary data trends of large volume,
heavy heterogeneity, and high velocity (‘Big’ data), it is also
anticipated that a vast majority of these applications are highly
latency-sensitive and require real-time processing [16]–[18].
Therefore, to provision the resource management and heavy
computational potential to the applications, IoT leans highly on
cloud computing [19]–[22]. Consequently, the performance of
IoT is profoundly dependent on the ability of cloud platforms
to serve billions of devices and their applications, in real-time
[12], [23].

B. Cloud computing

Over the last few years, a good number of works [24]–
[27] on cloud computing illustrate the detailed underlying
process behind the provisioning of cloud services. The process
of complete virtualization of cloud services involves several
cloud DCs, dispersed across multiple geographical locations.
Cloud systems are, therefore, DCN-centric and for every user-
request, service provisioning involves one or more DCNs.
In [28], Xiao et al. addressed the problem of design and
optimal positioning of DCs to improve the QoS in terms
of service latency and cost efficiency. However, the work is
strongly affected by the efficiency of the DCNs. In another
work, Chen et al. [29] focused on the problem of latency for
video streaming services. The work suggests the usage of a
single DC under a single CSP. However, the situation might be
hypothetical as in real-life scenarios of IoT, a single DC under
a single global CSP may hinder the overall service efficiency
due to lack of proper management and shortage of cloud
storage. Tziritas et al. [30] addressed process migration to
improve the performance of cloud systems and demonstrated
experimental results with 1000 processes. However, IoT con-
cerns billions of processes and in such a scenario, process
migration within DCs might be of overhead degrading the
performance. Similarly, job scheduling techniques to improve
QoS were also compared by Chandio et al. [31] using 22, 385
jobs. However, compared to IoT systems, the count is too low
less to be considered. Other scheduling techniques that focus
on real-time workload scheduling [32] or energy-efficient
scheduling [33] have also worked with low scale scenarios
comprising of a maximum of 128 Virtual Machine instances
and 1000 cloud servers, respectively.

For each of the above works, the DCs form the hub of
computing and the DCNs are invoked everytime an application
makes a service request. Therefore, with the increase in

the number of IoT consumers and with every request being
required to be processed within the DCs, it is likely that the
cloud DCNs will encounter a serious difficulty in serving the
IoT applications real-time. Additionally, with the increase in
the number of latency-sensitive applications, the efficiency
of service provisioning will also reduce to a significant ex-
tent. Moreover, considering the contemporary state of our
environment, it is observed and reported [34]–[37] that as
we are more and more advancing towards technology, we
are driving our nature to an alarming state. Therefore, it is
imperative to simultaneously maintain the eco-friendliness of
our surroundings.

C. Fog computing

The contemporary trends in data volume, velocity, and
variety and the limitations of cloud computing make it easy
to speculate the need to propose new techniques of data man-
agement and administration. In this context, Cisco proposed
the revolutionary concept of fog computing [3], [38]. Fog
computing is defined as a distributed computing infrastructure
that is able to handle billions of Internet-connected devices.
The underlying principle of the technology is edge computing
in which the services are hosted within the edge devices
inclusive of the gateways, routers, and access points. Bonomi
et al., [38] explicates the different architectural components
of the fog computing paradigm and illustrated few of its real-
life applications. The authors also highlighted the importance
of fog-cloud interplay and the role of fog computing in the
context of IoT. In [39], the authors defined the characteristics
of the paradigm in terms of latency, location awareness,
geographical distribution, mobility, heterogeneity, and the pre-
dominant access to wireless devices. However, these works
mostly center around the theory and dogma associated with
fog computing. Hong et al. [40] designed a programming
model to support large-scale IoT applications through mobile
fog computing. The model supports the service provisioning
to geographically scattered, latency-sensitive applications.

Recent researches, however, have revealed some of the
important aspects of fog computing. The importance and
applicability of fog computing were assessed by Yannuzzi
et al. [41] and Preden et al. [42] at a superficial level. In
[43], the authors considered various computing paradigms
inclusive of cloud computing, and investigated the feasibility
of building up a reliable and fault-tolerant fog computing
platform. Do et al. [44] and Aazam and Huh [45], [46] have
inspected the different intricacies of resource allocation in a
fog computing framework. Of late, few researchers have also
explored the security and privacy aspects of fog computing
[47]–[49]. However, most of the works on fog computing
have primarily focused on the principles, basic notions, and
the doctrines of it. Not many works have contributed in the
technical aspect of the paradigm in terms of an implementation
perspective.

D. Focus of the paper

This work studies the suitability and applicability of fog
computing as a potential platform to support IoT. The novelty
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of the paper is to model the paradigm of fog computing and
perform a comparative study in terms of power consumption,
cost and latency with respect to cloud systems. The work
further investigates the eco-friendly aspects of the paradigm
to judge its appropriateness to serve the world of Internet
connected devices.

III. FOG COMPUTING ARCHITECTURE

In this Section, we present the fog computing architecture
and its minute details. It is imperative to mention that fog
computing is a non-trivial extension of cloud computing and
extends the services of cloud to the network edge.

A. Assumptions
Fog paradigm is still in its early stage of research and is

yet to shape up. We, therefore, draw few simple, yet realistic
assumptions with justification for the same.
• Every terminal node (TN) is aware of its absolute geo-

spatial location and is able to share the information
through technologies such as GPS, GIS, or GNSS so that
location-based services are provided to the TNs in real-
time based on region-specific data analysis.

• The devices of the fog computing tier of are “intelligent”
in terms of their computational and storage ability [38],
[40]. Apart from their typical functionalities (routing or
packet forwarding), these devices are capable of dynamic
decision-making on whether an application request can be
served within the fog tier or it needs to be forwarded to
the cloud computing core for processing.

• The networking devices of the fog computing layer,
as shown in Fig. 2, are self-adjusting to dynamic load
sharing in terms of the network, computational, and
storage load among themselves.

• Every fog computing devices can support the mobility
of the TNs. As the Internet-connected devices are highly
mobile in nature, intra-fog tier communication and infor-
mation transfer is necessary to provided continued service
in real-time to the TNs without any disruptions.

B. System Outline
This subsection illustrates the distinct tiers of a generic fog

computing architecture. As depicted in Fig. 1, it is essentially
a three tier architecture. The tiers are discussed below.
(a) Tier 1: This is the bottom-most tier of the architecture.

The tier comprises of several TNs. The TNs are majorly
smart, wireless sensor nodes that sense heterogeneous
physical parameters and transmit the same to the imme-
diate upper tier.

(b) Tier 2: The tier 2 or the middle layer is also known as
the fog computing layer. The primary components of this
tier are intelligent intermediate devices (such as routers,
gateways, switches, and access points) that possess the
ability of data storage, computation, routing, and packet
forwarding.

(c) Tier 3: The uppermost tier is commonly known as the
cloud computing tier. Several high-end servers and DCs
comprise this tier.

Fig. 1: Fog computing architecture

C. Architecture Details

The principle of fog computing architecture is based on
edge computing. As already discussed, the bottom-most tier
comprising of smart Internet connected TNs are one of the
fundamental components of IoT. The TNs are assumed to
form location-based logical clusters, which are termed as
Virtual Clusters (VCs). The VCs together form an Edge
Virtual private Network (EVPN) that transmits data to multiple
Fog Instances (FIs). An FI is conceptualized specific to a
geographic location. The mobility of a TN makes the mapping
of a TN to an FI flexible and non-static. While the data are
transmitted upwards (towards the fog tier) they are processed
within the intermediate fog devices.

The fog devices can stretch from different networking
components, such as routers, switches, gateways, and access
points to high-end proxy servers and computing machines.
As proposed by Bonomi et al., [38] the fog computing
architecture can be classified into two sub-parts, viz., (a) the
fog abstraction layer and (b) the fog orchestration layer. While
the former manages the fog resources, enables virtualization,
and preserves tenant-privacy, the latter beholds the exclusive
fog properties. The fog orchestration layer comprises of a
small software agent – foglet which monitors the state of the
devices, a distributed database to account for scalability and
fault tolerance, and a service orchestration module which is
responsible for policy-based routing of application requests.
Within the FIs, the data are processed and analyzed to de-
cide whether it needs to be transmitted to the cloud DCs.
Application requests which require storage or historical data
based analytics are redirected to the cloud, else, the data are
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Fig. 2: Networking links and components of fog computing

processed within the fog units. The fog devices possess limited
semi-permanent storage that allow temporary data storage and
serve the latency-sensitive applications in real-time.

The cloud computing tier is commonly responsible for
permanent storage of huge, voluminous data chunks within its
powerful DCs. The DCs are equipped with massive computa-
tional ability. However, unlike conventional cloud architecture,
the core cloud DCs are not bombarded for every single query.
Fog computing enables the cloud tier to be accessed and
utilized in an efficient and controlled manner.

IV. NETWORKING MODEL

Motivated by the works of Zhang et al. [4], we develop the
network model of the fog computing paradigm. Analogous to
the above work, the proposed work designs the metric of fog
network model. Any cloud based analytics are excerpted from
the above cited work, especially while performing a compar-
ative study of cloud versus fog in Section VII. However, all
fog based evaluations are based on the metrics designed in
this work.

In this Section, we define the functional components and
the data transfer links associated with the fog computing
paradigm. The set of N geo-spatially distributed mobile TNs is
denoted by N , where |N | = N . At time instant t, we consider
these N TNs to be grouped under different VCs. The set of
all VCs is denoted by V , such that V = {vi|i ∈ [1, V ], i ∈ I}
and |V| = V , where V is the total number of VCs present
in the system and vi denotes the ith VC. The total number
of TNs mapped to vi is denoted by ni, ∀i = 1(1)V . As total
coverage of the TNs by the VCs is assumed for any instant
of time, we have:

V∑
i=1

|vi| =
V∑
i=1

ni = N. (1)

The data generated by all the constituent TNs within a VC
are transported through the edge gateways towards the fog
computing tier. The set of all edge gateways present at the
lowest tier in the computing architecture is denoted by E ,
with |E| = E. The data transport links between the VCs and
the edge gateways are considered to be of high bandwidth.
However, the data transmission bandwidth between the EVPNs
and the FIs are considered to be restricted. The set of all fog
instances present in the system at any given time is given
by F , with |F| = F . All data and queries generated from
the applications instances running with the TNs in tier 1
are forwarded through the (e, f) link, i.e., through the link
between the EVPN e and the FI f , ∀e ∈ E and ∀f ∈ F .

Let P vir (t) and P vis (t) be the total amount of data, in
bytes, that are generated from the VC vi in time-slot t which
demand to be served and stored, respectively. Note that, based
on the type of request a stream of bytes are forwarded to
the cloud computing tier. If a request demands real-time
services, it is processed and served from within the FI without
the intervention of the cloud computing core. However, the
requests which require intervention of the cloud computing
layer for analysis based on historical data-sets and for long-
term (semi-permanent or permanent) storage, are redirected to
the upper tier after each time-slot. Let Qvir (t) and Qvis (t) be
the total number of bytes generated from the VS vi which is
redirected to the cloud computing layer for computation and
storage purposes, respectively, in the tth time-slot. Clearly,
P vir (t) ≤ Qvir (t) and P vis (t) ≤ Qvis (t), ∀i = 1(1)V .

The fog gateways, located between the fog computing tier
and the cloud computing tier, are represented by the set G,
where |G| = G. Also, ∀f ∈ F and ∀g ∈ G, the data
communication link (f, g), between the FI f and the fog
gateway g is also bandwidth constrained. Finally, we discuss
the data communication and aggregation involving the cloud
computing framework. The byte-stream transmitted by the fog
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gateways reaches a cloud DC through a channel of limited
bandwidth. The set of all DCs at the cloud-end is represented
by K, where |K| = K. ∀g ∈ G and ∀c ∈ K, (g, c) the
communication link between the cloud gateway g and the
DC c is denoted by (g, c) which is the route through which
data reach the cloud computing tier from the fog computing
tier. However, we assume that at the cloud-end not all DCs
are responsible data aggregation at every instant of time. We
consider that at any given time instant, data aggregation and
subsequent analysis take place only in one DC. Data migration
between the cloud DCs takes place through high bandwidth
links.

V. MODELING THE PERFORMANCE METRICS

We define the fog tier routing variable (FTRV) as Xfog
vi,e,f

(t),
∀vi ∈ V,∀e ∈ E ,∀f ∈ F , which indicates the uplink route
through which the data generated from the VC vi in time-
slot t reaches the FI f for real-time processing and temporal
storage. However, for application instances which require to
be referred to the cloud framework for aggregation, historical
analysis, and long-term storage, the cloud tier routing variable
(CTRV) is defined as Xcld

f,g,c,d(t), ∀f ∈ F ,∀g ∈ G,∀c, d ∈ D,
which denotes the route through which data from the FI f
reaches its destination DC in time-slot t. For the FTRV, the
route vi → e → f represents the path along which the data
originated from vi moves to the FI f through the intermediate
edge gateway e. Similarly, for the CTRV, f → g → c → d
indicates that the data-stream is redirected from the FI f to the
cloud DC c through the intermediate fog gateway g, and from
there it is once again transferred to the DC d for aggregation
and further processing.

For any given route, its corresponding FTRV or CTRV value
is set as equal to the proportion of the total data (in bytes) gen-
erated in time-slot t which traverse through the route. Clearly,
if a given route for data transmission is valid (at least some
proportion of the total data generated traverses via the route),
the corresponding value of the FTRV or the CTRV is set as
non-zero, i.e., Xfog

vi,e,f
(t) > λ or Xcld

f,g,c,d(t) > λ, accordingly,
and is set to zero, otherwise. λ denotes the proportion of
the data which traversed through the concerned route, and
λ ∈ (0, 1]. Clearly,

∑
vi∈V,e∈E,f∈F X

fog
vi,e,f

(t) = 1 implies that
every byte of data originated from vi reaches f without any
loss, whereas,

∑
vi∈f∈F,g∈G,c,d∈DX

cld
f,g,c,d(t) = 1 indicates

that the amount of data redirected towards the DC d by the FI
f has reached its destination without any information loss. At
any given time instant t, the set of all feasible FTRVs (X fog)
is expressed as:

X fog =
{
Xfog
vi,e,f

(t) | Xfog
vi,e,f

(t) = [0, 1] and∑
vi∈V,e∈E,f∈F

Xfog
vi,e,f

(t) = 1,∀vi ∈ V,∀e ∈ E ,∀f ∈ F
}
.

(2)

Similarly, at time t, the set of feasible CTRVs (X cld) is given
by:

X cld =
{
Xcld
f,g,c,d(t) | Xcld

f,g,c,d(t) = [0, 1] and∑
vi∈f∈F,g∈G,c,d∈D

Xcld
f,g,c,d(t) = 1,

∀f ∈ F ,∀g ∈ G,∀c, d ∈ D
}
. (3)

A. Power Consumption
The total power consumption is divided into three broad

categories for application requests which are served by the
fog computing tier without inference of the cloud framework,
and into four broad categories for requests which are required
to be served by the cloud computing tier. Following is the
list of factors which are responsible for power consumption
during big data handling using the fog computing framework.

1) Data forwarding: While forwarding of data packets, the
overall power consumed due to reception of the byte-stream,
initial processing required for routing, and subsequent trans-
mission of the same, is categorized as power consumption due
to data forwarding. For data packets which require real-time,
low-latency services, and are processed at the fog computing
tier, and the corresponding power consumption due to data
forwarding (Ψfog

df (t))1 at time t is computed as:

Ψfog
df (t) = (γeg + γfi)

[ V∑
i=1

{
P vir (t)−Qvir (t) + P vis (t)

−Qvis (t)
} ∑
vi,e,f

Xfog
vi,e,f

(t)
]

= (γeg + γfi)
[ ∑
vi,e,f

{
P vir (t)−Qvir (t) + P vis (t)

−Qvis (t)
}
Xfog
vi,e,f

(t)
]
,

(4)
where γeg and γfi represent the amount of energy required

per second (power) to forward unit byte of data by the edge
gateways and the fog instances, respectively.

Similarly, for data packets which demand to be processed
at the core cloud computing module for complex analysis
and long-term storage, the corresponding power consumption
required for forwarding of the data packets (Ψcld

df (t))2 at time
t is expressed as:

Ψcld
df (t) = (γeg + γfi)

[ V∑
i=1

{
Qvir (t) +Qvis (t)

} ∑
vi,e,f

Xfog
vi,e,f

(t)
]

+γcl

[ V∑
i=1

{
Qvir (t) +Qvis (t)

} ∑
f,g,c,d

Xcld
f,g,c,d(t)

]
=

V∑
i=1

{
Qvir (t) +Qvis (t)

}[
(γeg + γfi)

∑
vi,e,f

Xfog
vi,e,f

(t)

+γcl
∑

f,g,c,d

Xcld
f,g,c,d(t)

]
,

(5)
where γcl is the power required to forward unit byte of data
by a cloud gateway.

1The notation
∑

vi,e,f
, as used in the paper essentially means the same

as the notation
∑

vi∈V,e∈E,f∈F .
2The notation

∑
f,g,c,d is used as an alternative for the notation∑

vi∈f∈F,g∈G,c,d∈D in the manuscript.
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2) Computation: The power consumption due to compu-
tation also occur at both fog tier and cloud tier. At the fog
computing layer, these computations are mostly real-time, low-
latency services which are required to meet the continuous and
ever-increasing demand of the TNs, otherwise stated as the IoE
devices. Computation and analysis at the fog tier involves the
temporarily stored data-sets within the fog computing devices.
Let τ denote the time-to-live for every data packet after which
it is removed from the temporary fog storage. Therefore, at
time t, the computational power consumption at the fog layer
(Ψfog

cp (t)) depends on the data stored within the FIs from time
(t− τ) till the present time-slot. (Ψfog

cp (t)) is mathematically
expressed as:

Ψfog
cp (t) = βfog

t∑
j=t−τ

φfogj

V∑
i=1

{P vis (j)−Qvis (j)}, (6)

where βfog is the average per byte computational power
consumption (obtained as the ratio of the power exhausted
for the processing of an instruction to the number of bytes
in the instruction). φfogj is the weight-factor associated with
the data-set which is required for analysis, and the magnitude
of φfogj decreases with the increase in the age of the data.
The magnitude of φfogj lies within (0, 1], with phifogj = 1 for
j = t. The expression

∑V
i=1{P vis (j) − Qvis (j)} indicates the

cumulative amount of data which is stored at time t within the
temporary fog storage units, for analysis and computation.

For the cloud computing tier, computations and subsequent
analysis are highly extensive in terms of the volume of data
involved and the complexity associated. At time instant t,
the power consumption at the cloud computing framework
due to computation and analysis, Ψcld

cp (t), is dependent on
the cumulative amount of data which stored within the DCs,
starting from the very beginning, i.e., t = 0. (Ψcld

cp (t)) is
computed as:

Ψcld
cp (t) = βcld

t∑
j=0

φcldj

V∑
i=1

Qvis (j), (7)

where βcld id the mean computational power required to
process unit byte at the cloud-end, and

∑V
i=1Q

vi
s (j) is the

total amount of data aggregated within a DC for processing
and computation, with φcldj ∈ [0, 1]. Clearly, for j = t,
φcldj = 1, whereas, as j → 0, φcldj → 0.

3) Storage: The power consumption due to storage, similar
to the computational power consumption, depends on the
number of bytes of data which is stored in the database
for processing and analysis. However, as the storage power
consumption is independent of the age of the data, unlike the
computational power, this term is void of any such weight-
factors. The mathematical expression for the storage power
consumption at time t for the fog tier (Ψfog

st (t)) is given by:

Ψfog
st (t) = αfog

t∑
j=0

V∑
i=1

{P vis (j)−Qvis (j)}. (8)

Similarly, for the cloud computing tier, the storage power
consumption (Ψcld

st (t)) is computed as:

Ψcld
st (t) = αcld

t∑
j=0

V∑
i=1

Qvis (j), (9)

where αfog and αcld represent the per byte per unit time
energy consumption to storage data within the databases in
the fog tier and the cloud DC, respectively.

4) Data migration: The power consumption due to data
migration is only associated with the cloud computing layer.
In other words, applications which require real-time services
data migration is irrelevant as they are served by the fog
computing tier without the intervention of the cloud computing
framework. However, for applications which demand complex
and historical analysis of data, migration of data from different
geo-spatially distributed DCs towards the aggregator DC is
required. As the aggregator DC may vary in every time-slot,
at any given time-slot t, it is important to migrate all data to
the aggregator DC for subsequent processing. At time t, the
overall migration cost (Ψcld

mg(t)) within the cloud computing
framework is given by:

Ψcld
mg(t) =


∑
c∈D

∑
d∈D

ηcd
t−1∑
j=0

φcldj
V∑
i=1

Qvis (j), if At 6= At−1

0 , otherwise
,

(10)
where ηcd is the per byte power consumption for cost migra-
tion of data from DC c to DC d, c, d ∈ D. At denotes the
aggregator DC at time-slot t. Therefore, At = At−1 implies
that the aggregator DC in time t is same as it was in the
previous time-slot, indicating no additional data migration is
required.

Therefore, at time t, the overall power consumption for
applications which are served by the fog computing tier,
Ψfog(t) is computed as:

Ψfog(t) = Ψfog
df (t) + Ψfog

cp (t) + Ψfog
st (t). (11)

Whereas, for application seeking intervention of the core cloud
computing, the cumulative power consumption at time t is
calculated as:

Ψcld(t) = Ψcld
df (t) + Ψcld

cp (t) + Ψcld
st (t) + Ψcld

mg(t). (12)

B. Service Latency

Service latency for a request sent by an application instance
running within a TN is basically its response time, and is
computed as the sum of the transmission latency and the
processing latency for the request. As mentioned earlier, the
communication among the different TNs within a EVPN
incur insignificant latency as sufficient bandwidth-support is
provided within every EVPN for the purpose. Similarly, inter-
DC communication and data migration, which take place along
the (c, d) link are also considered to invoke negligible latency
due to the high-bandwidth, W(c, d), dedicated available within
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the cloud-core, ∀c, d ∈ D [4]. However, the bottleneck of
communication is formed by the links (e, f) and (f, g),
∀e ∈ E ,∀f ∈ F ,∀g ∈ G. The bandwidth between the edge
gateways and the FIs, W(e, f) is limited, and at any given
time instant, as the active number of TNs in tier 1 increases,
the service latency also increases. The communication links
between fog gateways and the cloud gateways are bandwidth
constrained (W(f, g)) as well. In this Section we discuss
the service latency for the applications, and mathematically
formulate the expression for the same. The service latency is
divided into two subheads as mentioned below.

1) Transmission Latency: Let δef and δfg are the delays in
unit byte data transmission from a EVPN to the corresponding
FI, and from an fog gateway to the cloud gateway, respectively.
For applications which are served by the cloud computing tier,
the transmission latency at time t, (δfogtr (t)), is computed as:

δfogtr (t) = δef

V∑
i=1

{P vir (t) +P vis (t)−Qvir (t)−Qvis (t)}. (13)

Similarly, for requests which are handled at the cloud com-
puting tier, the corresponding transmission latency (δcldtr (t)) is
expressed as:

δcldtr (t) = (δef + δfg)

V∑
i=1

{Qvir (t) +Qvis (t)}. (14)

Therefore, in presence of the fog computing tier, the mean
transmission latency at time t (∆fog

tr ) is computed as:

∆fog
tr (t) =

δef
V∑
i=1

{P vir (t) + P vis (t)}+ δfg
V∑
i=1

{Qvir (t) +Qvis (t)}

V∑
i=1

{
P vir (t) + P vis (t)

}
(15)

On the contrary, in the traditional cloud computing frame-
work, the corresponding mean transmission latency (∆cld

tr (t))
is given as:

∆cld
tr (t) =

δeg
V∑
i=1

{P vir (t) + P vis (t)}

V∑
i=1

{
P vir (t) + P vis (t)

} (16)

where δeg is the latency associated with unit byte data trans-
mission from a TN to the cloud DC. Clearly, from the triangle
inequality, we have δeg ≥ δef + δfg .

2) Processing Latency: Processing latency for an applica-
tion instance request within the fog computing tier is defined as
the time required to serve the request after analyzing the data
accumulated during the previous τ time-slots within the fog
computing devices. Mathematically, at time t, the processing
latency, δfogpr (t), within the fog computing tier is expressed as:

δfogpr (t) =
(
P vir (t)−Qvir (t)

)
ζfog

t∑
j=t−τ

φfogj

V∑
i=1

{
P vis (j)

−Qvis (j)
}
. (17)

Similarly, for applications which are referred to the cloud
computing layer for processing purpose, the processing latency
is defined in terms of the time required to analyze the
cumulative migrated data-sets from the cloud DCs within the
aggregator DC. The processing latency (δcldpr (t)) within the
cloud computing core is, therefore, computed as:

δcldpr (t) = Qvir (t)ζcld
t∑

j=t−τ
φcldj

V∑
i=1

Qvis (j). (18)

where ζfog and ζcld represent the per byte processing latency
at the fog computing and cloud computing tiers, respectively.
The mean processing delay at time t for a fog computing
environment is:

∆cld
pr (t) =

[(
P vir (t)−Qvir (t)

)
ζfog

t∑
j=t−τ

φfogj

V∑
i=1

{
P vis (j)

−Qvis (j)
}

+Qvir (t)ζcld
t∑

j=t−τ
φcldj

V∑
i=1

Qvis (j)
]

/

V∑
i=1

{
P vir (t) + P vis (t)

}
. (19)

However, the average transmission latency, ∆cld
pr (t), at time t

for a traditional cloud computing framework is given as:

∆cld
pr (t) =

P vir (t)ζcld
t∑

j=t−τ
φcldj

V∑
i=1

P vis (j)

V∑
i=1

{
P vir (t) + P vis (t)

} . (20)

Finally, to compute the mean service latency, we simply
add the mean transmission latency and the mean processing
latency for the corresponding computing framework.

VI. CASE STUDY: SIMULATION SETUP

This Section illustrates the network setup, power consump-
tion, CO2 emission rate, and the cost variables corresponding
to the fog computing framework.

A. Network Topology

The essential nodes of the fog computing network includes
the sets of the TNs N , the FIs F , and the cloud DCs D.
We consider a global deployment of these essential nodes.
For this purpose, the work considers 100 highest populated
cities across the globe [50], the respective population of
people using Internet services [51], and the corresponding
geographic location of the cities [52], as shown in Fig. 3. The
matrix Lc[1..100][1..100] stores the relative Euclidean distance
between any pair of cities. The TNs within a particular city
are logically grouped to form a VC.
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Fig. 3: Global deployment scenario
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(b) Processing latency vs No. of TNs
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(c) Service latency vs No. of TNs

Fig. 4: Analysis of service latency
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(a) Power consumption due to data forwarding

2 4 6 8 10
x 10

4

0

500

1000

1500

2000

2500

Number of terminal nodes

M
ea

n 
po

w
er

 c
on

su
m

pt
io

n 
fo

r 
co

m
pu

ta
tio

n 
(k

W
)

 

 

Conventional cloud
Fog (Θ=75)
Fog (Θ=50)
Fog (Θ=25)
Fog (Θ=5)

(b) Power consumption due to computation
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(c) Power consumption due to data storage

Fig. 5: Analysis of power consumption

B. Network Traffic

The data traffic generated from the cities (or VCs) is
proportional to the population of Internet users of the corre-
sponding city. Data from the EVPNs are transmitted to the
fog computing tier in form of packets. These packet sizes
typically vary between a minimum of 34 bytes (header + FCS
only) to a maximum of 65550 bytes. The instruction size is
taken as 64 bits. The packet arrival is considered to follow a
Poisson distribution with the mean packet arrival rate being 1

packet per node per second. Communication among the TNs
within a EVPN and that among the DCs within the cloud
computing core are assumed to take place through bandwidth
unconstrained channels, as mentioned earlier. However, the
capacity of the (e, f) links, ∀e ∈ E ,∀f ∈ F is considered
to be 1 Gbps. On the other hand, the (f, g), ∀f ∈ F ,∀g ∈ G
link capacity is taken as 10 Gbps.
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C. Terminal Nodes

The total number of TNs in the system is treated as
a variable, within the range [10, 000, 100, 000], to assess
the system performance against varied network conditions.
The number of TNs in each of the 100 cities is taken as
proportional to the population of Internet users of the city.
The TNs transmit their data through access points distributed
within each city. All TNs within a city are considered to send
their data to a single FI.

D. Data Centers

The number of DCs present worldwide is considered to
be 8. Based on the clustering of the city-population, the
location of the DCs are determined. The pair-wise Eu-
clidean distances between the DCs are stored in the ma-
trix Ld[1..8][1..8]. Every DC is assumed to accommodate
varied number of IT components within the discrete set
{16, 000, 32, 000, 64, 000, 128, 000}, based on the network
traffic is processes.
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Fig. 6: Overall power consumption vs No. of TNs

E. Power Consumption

The power consumed by the different network, computing,
and storage elements are used to compute the overall power
consumption by the system under the discussed scenario. The
power consumed by each 1 Gbps and 10 Gbps router is taken
as 20 W and 40 W, respectively [53]. Each 3-layer network
switch and storage component consumes 350 W and 600
W, respectively. The fog computing devices, within an FI,
consumes a total of 3.7 W collectively. Power consumption by
the cloud DCs are taken to be proportional to the IT elements
within those, and taken from the range {9.7, 19.4, 38.7, 77.4}
MW.

F. CO2 Emission

The sources of the energy supplied to the cloud DCs
determines the amount the CO2 gas produced. Table I depicts
the CO2 emission rate for the different energy sources taken
for analysis [54]:

TABLE I: CO2 emission rates

Type of energy source Energy source CO2 emission rate
(in g/kWh)

Non-renewable
Coal 960
Diesel 778
Natural gas 443

Renewable
Geothermal 38
Hydroelectric 10
Wind 9

G. Cost

For analysis of the cost both in terms of the operational
cost and the CO2 emission penalty, we define the cost of
the different component elements. Each 1 Gbps and 10 Gbps
router port costs $50/year. The Cost for each server is taken
as $4, 000/year [53]. The uploading cost for each byte of
data is taken as $ 12, and the storage cost per GB of
data is taken uniformly from within the range 0.45 − 0.55
$/hour. The electricity cost is taken as uniformly distributed
between $30/MHWh and $70/MWh [53]. The penalty for CO2

emission, however, was taken in higher degree. The penalty
was decided to be $1, 000/ton CO2 emitted.

VII. CASE STUDY: PERFORMANCE EVALUATION

In details of the results obtained in terms of the performance
metrics are presented and analyzed in this Section. The simu-
lation setup is mentioned in details in Section VI. Additionally,
we compare the performance of the fog computing paradigm
wit that of the traditional cloud computing architecture, and
present a thorough study against the same.

A. Service Latency

First, we analyze the variation of the service latency (trans-
mission latency + processing latency) with the number of
TNs present in tier 1. We define the ratio of the total bytes
transmitted to the fog computing tier to the number of bytes
referred to the cloud computing core as the cloud transmission
ratio, mathematically represented by the variable Θ. With the
change in the magnitude of Θ, within the range [0.05, 0.75],
we plot the transmission latency and propagation latency for
both fog computing and the conventional cloud computing
architectures, and observe the change in the corresponding
services latencues.

In Fig. 4(a) and Fig. 4(b), the mean transmission latency
and mean processing latency are plotted, separately, against
variable number of TNs, for different magnitudes of Θ. It is
observed that with the decrease in the magnitude of Θ, as
more number of application requests demand real-time and
latency-sensitive services, the mean transmission latency and
the mean processing latency are observed to diminish. Also,
with the increase in the number of TNs, the tranmission and
processing latencies increase.

Consequently, the overall service latency for both these
computing paradigm follow the same pattern. In summary, for
a very low percentage of applications which demand real-time
services, i.e., for a very high magnitude of Θ (Θ ' 100), the
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(a) CO2 emission due to data forwarding
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(b) CO2 emission due to computation
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(c) CO2 emission due to data storage

Fig. 7: Analysis of CO2 emission for non-renewable energy sources
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(a) CO2 emission due to data forwarding
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(b) CO2 emission due to computation
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(c) CO2 emission due to data storage

Fig. 8: Analysis of CO2 emission for renewable energy sources

service latency in fog computing becomes almost same with
that in a cloud computing environment.

B. Power Consumption

The power consumption for due to the individual effects
of data forwarding, computation, and data storage, and due
to their collective effect is analyzed in this subsection. As
shown in Fig. 5(a), although with the increase in the number
of TNs in the lowest tier, the mean power consumption due to
data forwarding increases linearly, the impact of the change
in the power consumption for different magnitudes of Θ is
observed to be very low. However, compared to a conventional
cloud computing framework, this mean power consumption
was significantly less.

In Fig. 5(b) and Fig. 5(c), the variation in the mean power
consumption due to computation and storage, respectively, are
shown against the change in the number of TNs. Similar
inferences are drawn from the two figures, as the power
consumption in both these cases are noticed to decrease by
a significant margin as the magnitude of Θ is decreased.

In presence of the fog computing tier, the mean cumulative
power consumption, as shown in Fig. 6, is always less than
that in a conventional cloud computing. We observe that com-
pared to the power consumption due to data forwarding, the
amount of power consumed due to computation and storage
are considerably high. For Θ = 75, the overall mean power
consumption is calculated to be 42.2% less in fog computing.

C. CO2 Emission

The impact of power consumption on the environment is
depicts through the amount of CO2 gas emission in the
process. As mentioned in Section VI, we divide our analysis
based on the type of the energy source – non-renewable and
renewable. For analysis of CO2 emission in both cloud and
fog systems, the predominant factor that we have assumed
is the power consumption of the DCs in each case. The
experiment considers distinct multiplicative factors for various
non-renewable and renewable energy sources (Table I).

In Fig. 7, variation in the mean CO2 emission for each of
the individual factors, viz., data forwarding, computation, and
data storage is plotted against variable number of TNs. As
indicated in Fig. 7(a),the average CO2 emission for packet
forwarding is notably high in cloud computing paradigm
compared to fog computing paradigm when coal, diesel, and
natural gas are considered. In Fig. 7(a), it is observed that,
for the same non-renewable energy source type, the mean
CO2 emission stands greener compared to conventional cloud
systems while taking computation into account. Lastly, even
for the purpose of storage, we observe a significant reduction
in CO2 emission in Fig. 7(c).

We now examine the case of green computation for re-
newable energy sources, as shown in Fig. 8. For the purpose
of study, we have assumed three types of renewable energy
sources – geothermal, hydroelectric, and offshore wind. Sim-
ilar to Fig. 7, it is observant that fog computing platform
are distinctly greener in trems of CO2 emission compared
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to cloud platforms, considering packet forwarding (Fig. 8(a)),
computation (Fig. 8(b)), and storage (Fig. 8(c)) into account.
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Fig. 9: Comparison of total CO2 emission for different sources

A combined analysis of Figs. 7 and 8 is presented in Figs.
9(a) and 9(b), respectively. For the sake of data aggregation we
have assumed Θ = 75. For non-renewable energy sources, we
find that the over CO2 emission is decreased by 59.26% for
coal, 57.58% for diesel, and 55.56% for natural gas through
fog computing, compared to cloud computing. On the other
hand, for renewable energy sources, we observe that fog
computing achieves a reduction of 56.94% for geothermal
energy, 55.79% for hydroelectric energy, and 54.95% for
offshore wind energy.

D. Cost

In this Section, we analyze the cost incurred in both cloud
and fog computing environments for various operations.
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Fig. 10 indicates the standard cost incurred. Based on the
power consumption due to computation, we evaluate the cost
for computation. Similarly, we also evaluate the cost for rout-
ing and storage. Both the costs are observed to be considerably
higher in cloud environments than fog environments.
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Fig. 11: Analysis of cost for non-renewable energy sources

In Fig. 11, we evaluate the penalty to be paid by the TNs for
consumption of renewable and non-renewable energy sources.
From Fig. 11(a) we observe that the penalty is considerably
high for coal in cloud environments, whereas, in fog environ-
ments, it is remarkably low. Similarly, for diesel and natural
gas, the penalty are much lower in fog environments than cloud
platforms.

The analysis of penalty for consumption of renewable
energy sources is shown in Fig. 11(b). The penalty due to
consumption of geothermal energy is much higher in cloud
systems. The other types viz. hydroelectric and offshore wind
energy penalty are also reduced in fog platforms, compared to
cloud platforms.

Thus, the effects of Figs. 10 and 11 are combined in Fig.
12 to obtain the total incurred cost. It is observed that both
for non-renewable (Fig. 12(a)) and renewable (Fig. 12(b))
energy sources the fog based systems exhibit a cheaper nature
compared to cloud based systems.

VIII. CONCLUSION

The work focuses on analyzing the suitability of fog com-
puting within the framework of IoT. The goal of this paper
is to develop a mathematical model of fog computing and
assess its applicability in the context of IoT where it is pivotal
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Fig. 12: Analysis of cost for renewable energy sources

to meet the demands of the latency-sensitive applications
running at the network-edge. The work further performs
a comparative performance evaluation of cloud computing
with that of fog computing for an environment with high
number of Internet-connected devices demanding real-time
services. Results clearly depict the enhanced performance of
fog computing both in terms of the provisioned QoS and eco-
friendliness under such situations. We eventually justify fog
paradigm as an improved, eco-friendly computing platform
that can support IoT better compared to the existing cloud
computing paradigm.

In the future, we plan to extend this work by proposing
a working fog computing prototype to support real-time im-
plementation. The results of real network traffic and CO2

emission rate of the DCs can be utilized to strengthen the
model and support the future ‘green’ IoT technologies.
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